File size: 2,260 Bytes
244d72d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
library_name: transformers
license: apache-2.0
base_model: google/mt5-small
tags:
- summarization
- generated_from_trainer
metrics:
- rouge
model-index:
- name: mt5-small-finetuned-amazon-en-es
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mt5-small-finetuned-amazon-en-es

This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.7408
- Rouge1: 11.6009
- Rouge2: 2.8728
- Rougel: 11.8004
- Rougelsum: 11.9188

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 8

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2 | Rougel  | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|
| 12.338        | 1.0   | 300  | 5.2256          | 4.1224  | 1.2022 | 4.1645  | 4.2077    |
| 5.5954        | 2.0   | 600  | 3.9721          | 9.005   | 2.1934 | 9.133   | 9.2792    |
| 4.5559        | 3.0   | 900  | 3.8552          | 9.5807  | 2.6302 | 9.511   | 9.5471    |
| 4.1858        | 4.0   | 1200 | 3.8014          | 10.8843 | 2.9462 | 10.9298 | 11.1352   |
| 3.9963        | 5.0   | 1500 | 3.7575          | 13.0171 | 4.7986 | 13.0233 | 12.9146   |
| 3.884         | 6.0   | 1800 | 3.7491          | 11.6897 | 2.8728 | 11.8886 | 12.0365   |
| 3.8293        | 7.0   | 2100 | 3.7408          | 11.4003 | 2.8728 | 11.5425 | 11.6537   |
| 3.7902        | 8.0   | 2400 | 3.7408          | 11.6009 | 2.8728 | 11.8004 | 11.9188   |


### Framework versions

- Transformers 4.46.2
- Pytorch 2.5.1+cu121
- Tokenizers 0.20.3