metadata
tags:
- merge
- mergekit
- lazymergekit
- Kaoeiri/Keiana-L3-Test5.45-8B-10.5
- jeiku/Chaos_RP_l3_8B
- Sao10K/L3-Solana-8B-v1
base_model:
- Kaoeiri/Keiana-L3-Test5.45-8B-10.5
- jeiku/Chaos_RP_l3_8B
- Sao10K/L3-Solana-8B-v1
Keiana-L3-Test5.6-8B-12
Keiana-L3-Test5.6-8B-12 is a merge of the following models using LazyMergekit:
Keep in mind that, this merged model isn't usually tested at the moment, which could benefit in vocabulary error.
🧩 Configuration
merge_method: model_stock
dtype: float16
base_model: Kaoeiri/Keiana-L3-Test5.4-8B-10
models:
- model: Kaoeiri/Keiana-L3-Test5.45-8B-10.5
parameters:
weight: .126
density: .216
- model: jeiku/Chaos_RP_l3_8B
parameters:
weight: .128
density: .256
- model: Sao10K/L3-Solana-8B-v1
parameters:
weight: .16
density: .12
parameters:
normalize: true
int8_mask: true
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Kaoeiri/Keiana-L3-Test5.6-8B-12"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])