File size: 5,534 Bytes
c48cf7d
 
 
 
 
 
 
 
fa667e4
c48cf7d
 
 
6f44090
c48cf7d
 
 
 
6f44090
 
 
 
 
e793253
aa57f6a
 
e793253
 
 
 
 
c48cf7d
 
 
 
 
 
 
 
 
 
 
e793253
 
 
 
 
 
 
 
 
c48cf7d
 
 
 
 
 
 
 
 
 
ee6552c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c48cf7d
 
 
ee6552c
c48cf7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5575740
 
8d96194
 
5575740
6f44090
c48cf7d
 
aa57f6a
ee6552c
e793253
 
 
 
 
 
 
c48cf7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e793253
 
 
 
c48cf7d
 
aa57f6a
c48cf7d
 
 
 
 
e793253
 
c48cf7d
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import os

from trainer import Trainer, TrainerArgs

from TTS.tts.configs.shared_configs import BaseDatasetConfig , CharactersConfig
from TTS.config.shared_configs import BaseAudioConfig
from TTS.tts.configs.vits_config import VitsConfig
from TTS.tts.datasets import load_tts_samples
from TTS.tts.models.vits import  CharactersConfig, Vits, VitsArgs, VitsAudioConfig
from TTS.tts.utils.text.tokenizer import TTSTokenizer
from TTS.utils.audio import AudioProcessor
from TTS.tts.utils.speakers import SpeakerManager
# from TTS.tts.datasets.formatters import mozilla_with_speaker

output_path = os.path.dirname(os.path.abspath(__file__))







dataset_config = BaseDatasetConfig(
    formatter="mozilla_with_speaker",
    # formatter="mozilla",
    dataset_name="multi_persian",
    meta_file_train="metadata.csv",
    language="fa",
    phonemizer="espeak",
    path="/kaggle/input",

)




audio_config = BaseAudioConfig(
    sample_rate=22050,
    do_trim_silence=False,
    resample=False,
)


### Extract speaker embeddings
SPEAKER_ENCODER_CHECKPOINT_PATH = (
    "https://github.com/coqui-ai/TTS/releases/download/speaker_encoder_model/model_se.pth.tar"
)
SPEAKER_ENCODER_CONFIG_PATH = "https://github.com/coqui-ai/TTS/releases/download/speaker_encoder_model/config_se.json"


character_config=CharactersConfig(
  characters='ءابتثجحخدذرزسشصضطظعغفقلمنهويِپچژکگیآأؤإئًَُّ',
  punctuations='!(),-.:;? ̠،؛؟‌<>',
  phonemes='ˈˌːˑpbtdʈɖcɟkɡqɢʔɴŋɲɳnɱmʙrʀⱱɾɽɸβfvθðszʃʒʂʐçʝxɣχʁħʕhɦɬɮʋɹɻjɰlɭʎʟaegiouwyɪʊ̩æɑɔəɚɛɝɨ̃ʉʌʍ0123456789"#$%*+/=ABCDEFGHIJKLMNOPRSTUVWXYZ[]^_{}',
  pad="<PAD>",
  eos="<EOS>",
  bos="<BOS>",
  blank="<BLNK>",
  characters_class="TTS.tts.utils.text.characters.IPAPhonemes",
  )



model_args = VitsArgs(
    d_vector_file=['/kaggle/working/speakers.pth'],
    use_d_vector_file=True,
    d_vector_dim=512,
    num_layers_text_encoder=10,
    speaker_encoder_model_path=SPEAKER_ENCODER_CHECKPOINT_PATH,
    speaker_encoder_config_path=SPEAKER_ENCODER_CONFIG_PATH,
    # resblock_type_decoder="2",  # On the paper, we accidentally trained the YourTTS using ResNet blocks type 2, if you like you can use the ResNet blocks type 1 like the VITS model
    # Usefull parameters to enable the Speaker Consistency Loss (SCL) discribed in the paper
    # use_speaker_encoder_as_loss=True,
    # Usefull parameters to the enable multilingual training
    # use_language_embedding=True,
    # embedded_language_dim=4,
)


config = VitsConfig(
    audio=audio_config,
    run_name="vits_fa_female",
    model_args=model_args,
    batch_size=8,
    eval_batch_size=4,
    batch_group_size=5,
    num_loader_workers=0,
    num_eval_loader_workers=2,
    run_eval=True,
    test_delay_epochs=-1,
    epochs=1000,
    save_step=1000,
    text_cleaner="basic_cleaners",
    use_phonemes=True,
    phoneme_language="fa",
    characters=character_config,
    phoneme_cache_path=os.path.join(output_path, "phoneme_cache"),
    compute_input_seq_cache=True,
    print_step=25,
    print_eval=True,
    mixed_precision=False,
    test_sentences=[
        ["سلطان محمود در زمستانی سخت به طلخک گفت که","dilara",None,"fa"],
        [" با این جامه ی یک لا در این سرما چه می کنی ","farid",None,"fa"],
        ["مردی نزد بقالی آمد و گفت پیاز هم ده تا دهان بدان خو شبوی سازم.","farid",None,"fa"],
        ["از مال خود پاره ای گوشت بستان و زیره بایی معطّر بساز","dilara",None,"fa"],
        ["یک بار هم از جهنم بگویید.","changiz",None,"fa"],
        ["یکی اسبی به عاریت خواست","changiz",None,"fa"],
    ],
    output_path=output_path,
    datasets=[dataset_config],
    
    # Enable the weighted sampler
    use_weighted_sampler=True,
    # Ensures that all speakers are seen in the training batch equally no matter how many samples each speaker has
    weighted_sampler_attrs={"speaker_name": 1.0},
    weighted_sampler_multipliers={},
    # It defines the Speaker Consistency Loss (SCL) α to 9 like the paper
    speaker_encoder_loss_alpha=9.0,
)

# INITIALIZE THE AUDIO PROCESSOR
# Audio processor is used for feature extraction and audio I/O.
# It mainly serves to the dataloader and the training loggers.
ap = AudioProcessor.init_from_config(config)

# INITIALIZE THE TOKENIZER
# Tokenizer is used to convert text to sequences of token IDs.
# config is updated with the default characters if not defined in the config.
tokenizer, config = TTSTokenizer.init_from_config(config)

# LOAD DATA SAMPLES
# Each sample is a list of ```[text, audio_file_path, speaker_name]```
# You can define your custom sample loader returning the list of samples.
# Or define your custom formatter and pass it to the `load_tts_samples`.
# Check `TTS.tts.datasets.load_tts_samples` for more details.



# Load all the datasets samples and split traning and evaluation sets
train_samples, eval_samples = load_tts_samples(
    config.datasets,
    # formatter=mozilla_with_speaker,
    eval_split=True,
    eval_split_max_size=config.eval_split_max_size,
    eval_split_size=config.eval_split_size,
)

# Init the model
model = Vits.init_from_config(config,ap, tokenizer)




# init the trainer and 🚀
trainer = Trainer(
    TrainerArgs(),
    config,
    output_path,
    model=model,
    train_samples=train_samples,
    eval_samples=eval_samples,
)
trainer.fit()