File size: 5,534 Bytes
c48cf7d fa667e4 c48cf7d 6f44090 c48cf7d 6f44090 e793253 aa57f6a e793253 c48cf7d e793253 c48cf7d ee6552c c48cf7d ee6552c c48cf7d 5575740 8d96194 5575740 6f44090 c48cf7d aa57f6a ee6552c e793253 c48cf7d e793253 c48cf7d aa57f6a c48cf7d e793253 c48cf7d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
import os
from trainer import Trainer, TrainerArgs
from TTS.tts.configs.shared_configs import BaseDatasetConfig , CharactersConfig
from TTS.config.shared_configs import BaseAudioConfig
from TTS.tts.configs.vits_config import VitsConfig
from TTS.tts.datasets import load_tts_samples
from TTS.tts.models.vits import CharactersConfig, Vits, VitsArgs, VitsAudioConfig
from TTS.tts.utils.text.tokenizer import TTSTokenizer
from TTS.utils.audio import AudioProcessor
from TTS.tts.utils.speakers import SpeakerManager
# from TTS.tts.datasets.formatters import mozilla_with_speaker
output_path = os.path.dirname(os.path.abspath(__file__))
dataset_config = BaseDatasetConfig(
formatter="mozilla_with_speaker",
# formatter="mozilla",
dataset_name="multi_persian",
meta_file_train="metadata.csv",
language="fa",
phonemizer="espeak",
path="/kaggle/input",
)
audio_config = BaseAudioConfig(
sample_rate=22050,
do_trim_silence=False,
resample=False,
)
### Extract speaker embeddings
SPEAKER_ENCODER_CHECKPOINT_PATH = (
"https://github.com/coqui-ai/TTS/releases/download/speaker_encoder_model/model_se.pth.tar"
)
SPEAKER_ENCODER_CONFIG_PATH = "https://github.com/coqui-ai/TTS/releases/download/speaker_encoder_model/config_se.json"
character_config=CharactersConfig(
characters='ءابتثجحخدذرزسشصضطظعغفقلمنهويِپچژکگیآأؤإئًَُّ',
punctuations='!(),-.:;? ̠،؛؟<>',
phonemes='ˈˌːˑpbtdʈɖcɟkɡqɢʔɴŋɲɳnɱmʙrʀⱱɾɽɸβfvθðszʃʒʂʐçʝxɣχʁħʕhɦɬɮʋɹɻjɰlɭʎʟaegiouwyɪʊ̩æɑɔəɚɛɝɨ̃ʉʌʍ0123456789"#$%*+/=ABCDEFGHIJKLMNOPRSTUVWXYZ[]^_{}',
pad="<PAD>",
eos="<EOS>",
bos="<BOS>",
blank="<BLNK>",
characters_class="TTS.tts.utils.text.characters.IPAPhonemes",
)
model_args = VitsArgs(
d_vector_file=['/kaggle/working/speakers.pth'],
use_d_vector_file=True,
d_vector_dim=512,
num_layers_text_encoder=10,
speaker_encoder_model_path=SPEAKER_ENCODER_CHECKPOINT_PATH,
speaker_encoder_config_path=SPEAKER_ENCODER_CONFIG_PATH,
# resblock_type_decoder="2", # On the paper, we accidentally trained the YourTTS using ResNet blocks type 2, if you like you can use the ResNet blocks type 1 like the VITS model
# Usefull parameters to enable the Speaker Consistency Loss (SCL) discribed in the paper
# use_speaker_encoder_as_loss=True,
# Usefull parameters to the enable multilingual training
# use_language_embedding=True,
# embedded_language_dim=4,
)
config = VitsConfig(
audio=audio_config,
run_name="vits_fa_female",
model_args=model_args,
batch_size=8,
eval_batch_size=4,
batch_group_size=5,
num_loader_workers=0,
num_eval_loader_workers=2,
run_eval=True,
test_delay_epochs=-1,
epochs=1000,
save_step=1000,
text_cleaner="basic_cleaners",
use_phonemes=True,
phoneme_language="fa",
characters=character_config,
phoneme_cache_path=os.path.join(output_path, "phoneme_cache"),
compute_input_seq_cache=True,
print_step=25,
print_eval=True,
mixed_precision=False,
test_sentences=[
["سلطان محمود در زمستانی سخت به طلخک گفت که","dilara",None,"fa"],
[" با این جامه ی یک لا در این سرما چه می کنی ","farid",None,"fa"],
["مردی نزد بقالی آمد و گفت پیاز هم ده تا دهان بدان خو شبوی سازم.","farid",None,"fa"],
["از مال خود پاره ای گوشت بستان و زیره بایی معطّر بساز","dilara",None,"fa"],
["یک بار هم از جهنم بگویید.","changiz",None,"fa"],
["یکی اسبی به عاریت خواست","changiz",None,"fa"],
],
output_path=output_path,
datasets=[dataset_config],
# Enable the weighted sampler
use_weighted_sampler=True,
# Ensures that all speakers are seen in the training batch equally no matter how many samples each speaker has
weighted_sampler_attrs={"speaker_name": 1.0},
weighted_sampler_multipliers={},
# It defines the Speaker Consistency Loss (SCL) α to 9 like the paper
speaker_encoder_loss_alpha=9.0,
)
# INITIALIZE THE AUDIO PROCESSOR
# Audio processor is used for feature extraction and audio I/O.
# It mainly serves to the dataloader and the training loggers.
ap = AudioProcessor.init_from_config(config)
# INITIALIZE THE TOKENIZER
# Tokenizer is used to convert text to sequences of token IDs.
# config is updated with the default characters if not defined in the config.
tokenizer, config = TTSTokenizer.init_from_config(config)
# LOAD DATA SAMPLES
# Each sample is a list of ```[text, audio_file_path, speaker_name]```
# You can define your custom sample loader returning the list of samples.
# Or define your custom formatter and pass it to the `load_tts_samples`.
# Check `TTS.tts.datasets.load_tts_samples` for more details.
# Load all the datasets samples and split traning and evaluation sets
train_samples, eval_samples = load_tts_samples(
config.datasets,
# formatter=mozilla_with_speaker,
eval_split=True,
eval_split_max_size=config.eval_split_max_size,
eval_split_size=config.eval_split_size,
)
# Init the model
model = Vits.init_from_config(config,ap, tokenizer)
# init the trainer and 🚀
trainer = Trainer(
TrainerArgs(),
config,
output_path,
model=model,
train_samples=train_samples,
eval_samples=eval_samples,
)
trainer.fit() |