File size: 1,824 Bytes
a8b7d35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
model-index:
- name: UniqueProcessedText
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# UniqueProcessedText

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.5682
- eval_Accuracy: 0.8841
- eval_F1_macro: 0.7994
- eval_F1_class_0: 0.8918
- eval_F1_class_1: 0.5714
- eval_F1_class_2: 0.9309
- eval_F1_class_3: 0.8571
- eval_F1_class_4: 0.8571
- eval_F1_class_5: 0.8667
- eval_F1_class_6: 0.7647
- eval_F1_class_7: 0.9545
- eval_F1_class_8: 0.9831
- eval_F1_class_9: 0.7692
- eval_F1_class_10: 0.8533
- eval_F1_class_11: 0.7143
- eval_F1_class_12: 0.8199
- eval_F1_class_13: 0.8889
- eval_F1_class_14: 0.8608
- eval_F1_class_15: 0.6486
- eval_F1_class_16: 0.0
- eval_F1_class_17: 0.9848
- eval_F1_class_18: 0.8485
- eval_F1_class_19: 0.9231
- eval_runtime: 17.459
- eval_samples_per_second: 64.723
- eval_steps_per_second: 4.067
- epoch: 0.92
- step: 3000

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Framework versions

- Transformers 4.32.0
- Pytorch 2.0.1+cu117
- Datasets 2.14.4
- Tokenizers 0.13.3