File size: 3,132 Bytes
dde910f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
---
tags:
- spacy
- token-classification
language:
- en
license: cc-by-sa-3.0
model-index:
- name: en_ner_bc5cdr_md
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.8795194126
- name: NER Recall
type: recall
value: 0.8352879028
- name: NER F Score
type: f_score
value: 0.8568332069
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.0
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.0
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.0
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.0
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.0
---
Spacy Models for Biomedical Text.
| Feature | Description |
| --- | --- |
| **Name** | `en_ner_bc5cdr_md` |
| **Version** | `0.5.1` |
| **spaCy** | `>=3.4.1,<3.5.0` |
| **Default Pipeline** | `tok2vec`, `tagger`, `attribute_ruler`, `lemmatizer`, `parser`, `ner` |
| **Components** | `tok2vec`, `tagger`, `attribute_ruler`, `lemmatizer`, `parser`, `ner` |
| **Vectors** | 4087446 keys, 50000 unique vectors (200 dimensions) |
| **Sources** | BC5CDR<br />OntoNotes 5<br />Common Crawl<br />GENIA 1.0 |
| **License** | `CC BY-SA 3.0` |
| **Author** | [Allen Institute for Artificial Intelligence](https://allenai.github.io/SciSpaCy/) |
### Label Scheme
<details>
<summary>View label scheme (99 labels for 3 components)</summary>
| Component | Labels |
| --- | --- |
| **`tagger`** | `$`, `''`, `,`, `-LRB-`, `-RRB-`, `.`, `:`, `ADD`, `AFX`, `CC`, `CD`, `DT`, `EX`, `FW`, `HYPH`, `IN`, `JJ`, `JJR`, `JJS`, `LS`, `MD`, `NFP`, `NN`, `NNP`, `NNPS`, `NNS`, `PDT`, `POS`, `PRP`, `PRP$`, `RB`, `RBR`, `RBS`, `RP`, `SYM`, `TO`, `UH`, `VB`, `VBD`, `VBG`, `VBN`, `VBP`, `VBZ`, `WDT`, `WP`, `WP$`, `WRB`, `XX`, ```` |
| **`parser`** | `ROOT`, `acl`, `acl:relcl`, `acomp`, `advcl`, `advmod`, `amod`, `amod@nmod`, `appos`, `attr`, `aux`, `auxpass`, `case`, `cc`, `cc:preconj`, `ccomp`, `compound`, `compound:prt`, `conj`, `cop`, `csubj`, `dative`, `dep`, `det`, `det:predet`, `dobj`, `expl`, `intj`, `mark`, `meta`, `mwe`, `neg`, `nmod`, `nmod:npmod`, `nmod:poss`, `nmod:tmod`, `nsubj`, `nsubjpass`, `nummod`, `parataxis`, `pcomp`, `pobj`, `preconj`, `predet`, `prep`, `punct`, `quantmod`, `xcomp` |
| **`ner`** | `CHEMICAL`, `DISEASE` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TAG_ACC` | 0.00 |
| `LEMMA_ACC` | 0.00 |
| `DEP_UAS` | 0.00 |
| `DEP_LAS` | 0.00 |
| `DEP_LAS_PER_TYPE` | 0.00 |
| `SENTS_P` | 0.00 |
| `SENTS_R` | 0.00 |
| `SENTS_F` | 0.00 |
| `ENTS_F` | 85.68 |
| `ENTS_P` | 87.95 |
| `ENTS_R` | 83.53 |
| `NER_LOSS` | 201857.49 | |