metadata
license: llama3
language:
- tr
model-index:
- name: Kocdigital-LLM-8b-v0.1
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge TR
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc
value: 44.03
name: accuracy
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag TR
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc
value: 46.73
name: accuracy
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU TR
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 49.11
name: accuracy
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA TR
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: acc
name: accuracy
value: 48.21
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande TR
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 10
metrics:
- type: acc
value: 54.98
name: accuracy
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k TR
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 51.78
name: accuracy
Kocdigital-LLM-8b-v0.1
This model is an fine-tuned version of a Llama3 8b Large Language Model (LLM) for Turkish. It was trained on a high quality Turkish instruction sets created from various open-source and internal resources. Turkish Instruction dataset carefully annotated to carry out Turkish instructions in an accurate and organized manner. The training process involved using the QLORA method.
Model Details
- Base Model: Llama3 8B based LLM
- Training Dataset: High Quality Turkish instruction sets
- Training Method: SFT with QLORA
QLORA Fine-Tuning Configuration
lora_alpha
: 128lora_dropout
: 0r
: 64target_modules
: "q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"bias
: "none"
Usage Examples
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(
"KOCDIGITAL/Kocdigital-LLM-8b-v0.1",
max_seq_length=4096)
model = AutoModelForCausalLM.from_pretrained(
"KOCDIGITAL/Kocdigital-LLM-8b-v0.1",
load_in_4bit=True,
)
system = 'Sen Türkçe konuşan genel amaçlı bir asistansın. Her zaman kullanıcının verdiği talimatları doğru, kısa ve güzel bir gramer ile yerine getir.'
template = "{}\n\n###Talimat\n{}\n###Yanıt\n"
content = template.format(system, 'Türkiyenin 3 büyük ilini listeler misin.')
conv = []
conv.append({'role': 'user', 'content': content})
inputs = tokenizer.apply_chat_template(conv,
tokenize=False,
add_generation_prompt=True,
return_tensors="pt")
print(inputs)
inputs = tokenizer([inputs],
return_tensors = "pt",
add_special_tokens=False).to("cuda")
outputs = model.generate(**inputs,
max_new_tokens = 512,
use_cache = True,
do_sample = True,
top_k = 50,
top_p = 0.60,
temperature = 0.3,
repetition_penalty=1.1)
out_text = tokenizer.batch_decode(outputs)[0]
print(out_text)
[Open LLM Turkish Leaderboard v0.2 Evaluation Results]
Metric | Value |
---|---|
Avg. | 49.11 |
AI2 Reasoning Challenge_tr-v0.2 | 44.03 |
HellaSwag_tr-v0.2 | 46.73 |
MMLU_tr-v0.2 | 49.11 |
TruthfulQA_tr-v0.2 | 48.51 |
Winogrande _tr-v0.2 | 54.98 |
GSM8k_tr-v0.2 | 51.78 |