|
--- |
|
license: llama3 |
|
language: |
|
- tr |
|
model-index: |
|
- name: Kocdigital-LLM-8b-v0.1 |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: AI2 Reasoning Challenge TR |
|
type: ai2_arc |
|
config: ARC-Challenge |
|
split: test |
|
args: |
|
num_few_shot: 25 |
|
metrics: |
|
- type: acc |
|
value: 44.03 |
|
name: accuracy |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: HellaSwag TR |
|
type: hellaswag |
|
split: validation |
|
args: |
|
num_few_shot: 10 |
|
metrics: |
|
- type: acc |
|
value: 46.73 |
|
name: accuracy |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MMLU TR |
|
type: cais/mmlu |
|
config: all |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 49.11 |
|
name: accuracy |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: TruthfulQA TR |
|
type: truthful_qa |
|
config: multiple_choice |
|
split: validation |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: acc |
|
name: accuracy |
|
value: 48.21 |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: Winogrande TR |
|
type: winogrande |
|
config: winogrande_xl |
|
split: validation |
|
args: |
|
num_few_shot: 10 |
|
metrics: |
|
- type: acc |
|
value: 54.98 |
|
name: accuracy |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: GSM8k TR |
|
type: gsm8k |
|
config: main |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 51.78 |
|
name: accuracy |
|
--- |
|
|
|
<img src="https://huggingface.co/KOCDIGITAL/Kocdigital-LLM-8b-v0.1/resolve/main/icon.jpeg" |
|
alt="KOCDIGITAL LLM" width="420"/> |
|
|
|
# Kocdigital-LLM-8b-v0.1 |
|
|
|
This model is an fine-tuned version of a Llama3 8b Large Language Model (LLM) for Turkish. It was trained on a high quality Turkish instruction sets created from various open-source and internal resources. Turkish Instruction dataset carefully annotated to carry out Turkish instructions in an accurate and organized manner. The training process involved using the QLORA method. |
|
|
|
## Model Details |
|
|
|
- **Base Model**: Llama3 8B based LLM |
|
- **Training Dataset**: High Quality Turkish instruction sets |
|
- **Training Method**: SFT with QLORA |
|
|
|
### QLORA Fine-Tuning Configuration |
|
|
|
- `lora_alpha`: 128 |
|
- `lora_dropout`: 0 |
|
- `r`: 64 |
|
- `target_modules`: "q_proj", "k_proj", "v_proj", "o_proj", |
|
"gate_proj", "up_proj", "down_proj" |
|
- `bias`: "none" |
|
|
|
## Usage Examples |
|
|
|
```python |
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
"KOCDIGITAL/Kocdigital-LLM-8b-v0.1", |
|
max_seq_length=4096) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
"KOCDIGITAL/Kocdigital-LLM-8b-v0.1", |
|
load_in_4bit=True, |
|
) |
|
|
|
system = 'Sen Türkçe konuşan genel amaçlı bir asistansın. Her zaman kullanıcının verdiği talimatları doğru, kısa ve güzel bir gramer ile yerine getir.' |
|
|
|
template = "{}\n\n###Talimat\n{}\n###Yanıt\n" |
|
content = template.format(system, 'Türkiyenin 3 büyük ilini listeler misin.') |
|
|
|
conv = [] |
|
conv.append({'role': 'user', 'content': content}) |
|
inputs = tokenizer.apply_chat_template(conv, |
|
tokenize=False, |
|
add_generation_prompt=True, |
|
return_tensors="pt") |
|
|
|
print(inputs) |
|
|
|
inputs = tokenizer([inputs], |
|
return_tensors = "pt", |
|
add_special_tokens=False).to("cuda") |
|
|
|
outputs = model.generate(**inputs, |
|
max_new_tokens = 512, |
|
use_cache = True, |
|
do_sample = True, |
|
top_k = 50, |
|
top_p = 0.60, |
|
temperature = 0.3, |
|
repetition_penalty=1.1) |
|
|
|
out_text = tokenizer.batch_decode(outputs)[0] |
|
print(out_text) |
|
``` |
|
|
|
# [Open LLM Turkish Leaderboard v0.2 Evaluation Results] |
|
| Metric | Value | |
|
|---------------------------------|------:| |
|
| Avg. | 49.11 | |
|
| AI2 Reasoning Challenge_tr-v0.2 | 44.03 | |
|
| HellaSwag_tr-v0.2 | 46.73 | |
|
| MMLU_tr-v0.2 | 49.11 | |
|
| TruthfulQA_tr-v0.2 | 48.51 | |
|
| Winogrande _tr-v0.2 | 54.98 | |
|
| GSM8k_tr-v0.2 | 51.78 | |