Back to all models
Model card Files and versions Use in transformers

Unable to determine this model’s pipeline type. Check the docs .

Contributed by

KB National Library of Sweden non-profit
9 models

Swedish BERT Models

The National Library of Sweden / KBLab releases three pretrained language models based on BERT and ALBERT. The models are trained on approximately 15-20GB of text (200M sentences, 3000M tokens) from various sources (books, news, government publications, swedish wikipedia and internet forums) aiming to provide a representative BERT model for Swedish text. A more complete description will be published later on.

The following three models are currently available:

  • bert-base-swedish-cased (v1) - A BERT trained with the same hyperparameters as first published by Google.
  • bert-base-swedish-cased-ner (experimental) - a BERT fine-tuned for NER using SUC 3.0.
  • albert-base-swedish-cased-alpha (alpha) - A first attempt at an ALBERT for Swedish.

All models are cased and trained with whole word masking.


name files
bert-base-swedish-cased config, vocab, pytorch_model.bin
bert-base-swedish-cased-ner config, vocab pytorch_model.bin
albert-base-swedish-cased-alpha config, sentencepiece model, pytorch_model.bin

TensorFlow model weights will be released soon.

Usage requirements / installation instructions

The examples below require Huggingface Transformers 2.4.1 and Pytorch 1.3.1 or greater. For Transformers<2.4.0 the tokenizer must be instantiated manually and the do_lower_case flag parameter set to False and keep_accents to True (for ALBERT).

To create an environment where the examples can be run, run the following in an terminal on your OS of choice.

# git clone
# cd swedish-bert-models
# python3 -m venv venv
# source venv/bin/activate
# pip install --upgrade pip
# pip install -r requirements.txt

BERT Base Swedish

A standard BERT base for Swedish trained on a variety of sources. Vocabulary size is ~50k. Using Huggingface Transformers the model can be loaded in Python as follows:

from transformers import AutoModel,AutoTokenizer

tok = AutoTokenizer.from_pretrained('KB/bert-base-swedish-cased')
model = AutoModel.from_pretrained('KB/bert-base-swedish-cased')

BERT base fine-tuned for Swedish NER

This model is fine-tuned on the SUC 3.0 dataset. Using the Huggingface pipeline the model can be easily instantiated. For Transformer<2.4.1 it seems the tokenizer must be loaded separately to disable lower-casing of input strings:

from transformers import pipeline

nlp = pipeline('ner', model='KB/bert-base-swedish-cased-ner', tokenizer='KB/bert-base-swedish-cased-ner')

nlp('Idag släpper KB tre språkmodeller.')

Running the Python code above should produce in something like the result below. Entity types used are TME for time, PRS for personal names, LOC for locations, EVN for events and ORG for organisations. These labels are subject to change.

[ { 'word': 'Idag', 'score': 0.9998126029968262, 'entity': 'TME' },
  { 'word': 'KB',   'score': 0.9814832210540771, 'entity': 'ORG' } ]

The BERT tokenizer often splits words into multiple tokens, with the subparts starting with ##, for example the string Engelbert kör Volvo till Herrängens fotbollsklubb gets tokenized as Engel ##bert kör Volvo till Herr ##ängens fotbolls ##klubb. To glue parts back together one can use something like this:

text = 'Engelbert tar Volvon till Tele2 Arena för att titta på Djurgården IF ' +\
       'som spelar fotboll i VM klockan två på kvällen.'

l = []
for token in nlp(text):
    if token['word'].startswith('##'):
        l[-1]['word'] += token['word'][2:]
        l += [ token ]


Which should result in the following (though less cleanly formatted):

[ { 'word': 'Engelbert',     'score': 0.99..., 'entity': 'PRS'},
  { 'word': 'Volvon',        'score': 0.99..., 'entity': 'OBJ'},
  { 'word': 'Tele2',         'score': 0.99..., 'entity': 'LOC'},
  { 'word': 'Arena',         'score': 0.99..., 'entity': 'LOC'},
  { 'word': 'Djurgården',    'score': 0.99..., 'entity': 'ORG'},
  { 'word': 'IF',            'score': 0.99..., 'entity': 'ORG'},
  { 'word': 'VM',            'score': 0.99..., 'entity': 'EVN'},
  { 'word': 'klockan',       'score': 0.99..., 'entity': 'TME'},
  { 'word': 'två',           'score': 0.99..., 'entity': 'TME'},
  { 'word': 'på',            'score': 0.99..., 'entity': 'TME'},
  { 'word': 'kvällen',       'score': 0.54..., 'entity': 'TME'} ]


The easiest way to do this is, again, using Huggingface Transformers:

from transformers import AutoModel,AutoTokenizer

tok = AutoTokenizer.from_pretrained('KB/albert-base-swedish-cased-alpha'),
model = AutoModel.from_pretrained('KB/albert-base-swedish-cased-alpha')

Acknowledgements ❤️

  • Resources from Stockholms University, Umeå University and Swedish Language Bank at Gothenburg University were used when fine-tuning BERT for NER.
  • Model pretraining was made partly in-house at the KBLab and partly (for material without active copyright) with the support of Cloud TPUs from Google's TensorFlow Research Cloud (TFRC).
  • Models are hosted on S3 by Huggingface 🤗