File size: 9,338 Bytes
edb315f
 
549fe69
 
 
edb315f
549fe69
 
 
 
edb315f
549fe69
 
edb315f
549fe69
 
 
 
 
 
 
 
 
edb315f
549fe69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
edb315f
 
549fe69
edb315f
 
549fe69
 
 
 
 
 
edb315f
 
 
 
 
 
 
 
549fe69
 
 
 
 
 
 
 
edb315f
 
 
549fe69
edb315f
 
 
549fe69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
edb315f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
---
license: apache-2.0
language: en
datasets:
- Jzuluaga/uwb_atcc
tags:
- text
- token-classification
- en-atc
- en
- generated_from_trainer
- bert
- bertraffic
metrics:
- Precision
- Recall
- Accuracy
- F1
- Jaccard Error Rate
widget:
- text: "lining up runway three one csa five bravo easy five three kilo romeo contact ruzyne ground one two one decimal nine good bye"
- text: "swiss four six one foxtrot line up runway three one and wait one two one nine csa four yankee alfa"
- text: "tower klm five five tango ils three one wizz air four papa uniform tower roger"
model-index:
- name: bert-base-token-classification-for-atc-en-uwb-atcc
  results:
  - task:
        type: token-classification
        name: chunking
    dataset:
        type: Jzuluaga/uwb_atcc
        name: UWB-ATCC corpus (Air Traffic Control Communications)
        config: test
        split: test
    metrics:
    - type: F1
      value: 0.87
      name: TEST F1 (macro)
      verified: False
    - type: Accuracy
      value: 0.91
      name: TEST Accuracy
      verified: False
    - type: Precision
      value: 0.86
      name: TEST Precision (macro)
      verified: False
    - type: Recall
      value: 0.88
      name: TEST Recall (macro)
      verified: False   
    - type: Jaccard Error Rate
      value: 0.169
      name: TEST Jaccard Error Rate
      verified: False   
      
---

# bert-base-token-classification-for-atc-en-uwb-atcc


This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the [UWB-ATCC corpus](https://huggingface.co/datasets/Jzuluaga/uwb_atcc). 

<a href="https://github.com/idiap/bert-text-diarization-atc">
    <img alt="GitHub" src="https://img.shields.io/badge/GitHub-Open%20source-green\">
</a>

It achieves the following results on the evaluation set:
- Loss: 0.0098
- Precision: 0.9760
- Recall: 0.9741
- F1: 0.9750
- Accuracy: 0.9965


Paper: [BERTraffic: BERT-based Joint Speaker Role and Speaker Change Detection for Air Traffic Control Communications](https://arxiv.org/abs/2110.05781).

Authors: Juan Zuluaga-Gomez, Seyyed Saeed Sarfjoo, Amrutha Prasad, Iuliia Nigmatulina, Petr Motlicek, Karel Ondrej, Oliver Ohneiser, Hartmut Helmke

Abstract: Automatic speech recognition (ASR) allows transcribing the communications between air traffic controllers (ATCOs) and aircraft pilots. The transcriptions are used later to extract ATC named entities, e.g., aircraft callsigns. One common challenge is speech activity detection (SAD) and speaker diarization (SD). In the failure condition, two or more segments remain in the same recording, jeopardizing the overall performance. We propose a system that combines SAD and a BERT model to perform speaker change detection and speaker role detection (SRD) by chunking ASR transcripts, i.e., SD with a defined number of speakers together with SRD. The proposed model is evaluated on real-life public ATC databases. Our BERT SD model baseline reaches up to 10% and 20% token-based Jaccard error rate (JER) in public and private ATC databases. We also achieved relative improvements of 32% and 7.7% in JERs and SD error rate (DER), respectively, compared to VBx, a well-known SD system. 

Code — GitHub repository: https://github.com/idiap/bert-text-diarization-atc


## Intended uses & limitations

This model was fine-tuned on air traffic control data. We don't expect that it keeps the same performance on some others datasets where BERT was pre-trained or fine-tuned.

## Training and evaluation data

See Table 3 (page 5) in our paper:[BERTraffic: BERT-based Joint Speaker Role and Speaker Change Detection for Air Traffic Control Communications](https://arxiv.org/abs/2110.05781).. We described there the data used to fine-tune or model for speaker role and speaker change detection. 

- We use the UWB-ATCC corpus to fine-tune this model. You can download the raw data here: https://lindat.mff.cuni.cz/repository/xmlui/handle/11858/00-097C-0000-0001-CCA1-0
- However, do not worry, we have prepared a script in our repository for preparing this databases:
  - Dataset preparation folder: https://github.com/idiap/bert-text-diarization-atc/tree/main/data/databases/uwb_atcc
  - Prepare the data: https://github.com/idiap/bert-text-diarization-atc/blob/main/data/databases/uwb_atcc/data_prepare_uwb_atcc_corpus.sh
  - Get the data in the format required by HuggingFace: https://github.com/idiap/bert-text-diarization-atc/blob/main/data/databases/uwb_atcc/exp_prepare_uwb_atcc_corpus.sh


## Writing your own inference script

If you use language model, you need to install the KenLM bindings with:

```bash
conda activate your_environment
pip install https://github.com/kpu/kenlm/archive/master.zip
```

The snippet of code:

```python
from transformers import AutoTokenizer, AutoModelForTokenClassification

tokenizer = AutoTokenizer.from_pretrained("Jzuluaga/bert-base-token-classification-for-atc-en-uwb-atcc")
model = AutoModelForTokenClassification.from_pretrained("Jzuluaga/bert-base-token-classification-for-atc-en-uwb-atcc")


##### Process text sample (from wikipedia)

from transformers import pipeline

nlp = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="simple")
nlp("lining up runway three one csa five bravo b easy five three kilo romeo contact ruzyne ground one two one decimal nine good bye)


[{'entity_group': 'pilot',
'score': 0.99991554,
'word': 'lining up runway three one csa five bravo b', 'start': 0, 'end': 43
},
{'entity_group': 'atco',
'score': 0.99994576,
'word': 'easy five three kilo romeo contact ruzyne ground one two one decimal nine good bye', 'start': 44, 'end': 126
}]

```

# Cite us

If you use this code for your research, please cite our paper with:

```
@article{zuluaga2022bertraffic,
  title={BERTraffic: BERT-based Joint Speaker Role and Speaker Change Detection for Air Traffic Control Communications},
  author={Zuluaga-Gomez, Juan and Sarfjoo, Seyyed Saeed and Prasad, Amrutha and others},
  journal={IEEE Spoken Language Technology Workshop (SLT), Doha, Qatar},
  year={2022}
  }
```

and,

```
@article{zuluaga2022how,
    title={How Does Pre-trained Wav2Vec2. 0 Perform on Domain Shifted ASR? An Extensive Benchmark on Air Traffic Control Communications},
    author={Zuluaga-Gomez, Juan and Prasad, Amrutha and Nigmatulina, Iuliia and Sarfjoo, Saeed and others},
    journal={IEEE Spoken Language Technology Workshop (SLT), Doha, Qatar},
    year={2022}
  }
```
and, 

```
@article{zuluaga2022atco2,
  title={ATCO2 corpus: A Large-Scale Dataset for Research on Automatic Speech Recognition and Natural Language Understanding of Air Traffic Control Communications},
  author={Zuluaga-Gomez, Juan and Vesel{\`y}, Karel and Sz{\"o}ke, Igor and Motlicek, Petr and others},
  journal={arXiv preprint arXiv:2211.04054},
  year={2022}
}
```

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- training_steps: 10000

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 0.03  | 500   | 0.2282          | 0.6818    | 0.7001 | 0.6908 | 0.9246   |
| 0.3487        | 0.06  | 1000  | 0.1214          | 0.8163    | 0.8024 | 0.8093 | 0.9631   |
| 0.3487        | 0.1   | 1500  | 0.0933          | 0.8496    | 0.8544 | 0.8520 | 0.9722   |
| 0.1124        | 0.13  | 2000  | 0.0693          | 0.8845    | 0.8739 | 0.8791 | 0.9786   |
| 0.1124        | 0.16  | 2500  | 0.0540          | 0.8993    | 0.8911 | 0.8952 | 0.9817   |
| 0.0667        | 0.19  | 3000  | 0.0474          | 0.9058    | 0.8929 | 0.8993 | 0.9857   |
| 0.0667        | 0.23  | 3500  | 0.0418          | 0.9221    | 0.9245 | 0.9233 | 0.9865   |
| 0.0492        | 0.26  | 4000  | 0.0294          | 0.9369    | 0.9415 | 0.9392 | 0.9903   |
| 0.0492        | 0.29  | 4500  | 0.0263          | 0.9512    | 0.9446 | 0.9479 | 0.9911   |
| 0.0372        | 0.32  | 5000  | 0.0223          | 0.9495    | 0.9497 | 0.9496 | 0.9915   |
| 0.0372        | 0.35  | 5500  | 0.0212          | 0.9530    | 0.9514 | 0.9522 | 0.9923   |
| 0.0308        | 0.39  | 6000  | 0.0177          | 0.9585    | 0.9560 | 0.9572 | 0.9933   |
| 0.0308        | 0.42  | 6500  | 0.0169          | 0.9619    | 0.9613 | 0.9616 | 0.9936   |
| 0.0261        | 0.45  | 7000  | 0.0140          | 0.9689    | 0.9662 | 0.9676 | 0.9951   |
| 0.0261        | 0.48  | 7500  | 0.0130          | 0.9652    | 0.9629 | 0.9641 | 0.9945   |
| 0.0214        | 0.51  | 8000  | 0.0127          | 0.9676    | 0.9635 | 0.9656 | 0.9953   |
| 0.0214        | 0.55  | 8500  | 0.0109          | 0.9714    | 0.9708 | 0.9711 | 0.9959   |
| 0.0177        | 0.58  | 9000  | 0.0103          | 0.9740    | 0.9727 | 0.9734 | 0.9961   |
| 0.0177        | 0.61  | 9500  | 0.0101          | 0.9768    | 0.9744 | 0.9756 | 0.9963   |
| 0.0159        | 0.64  | 10000 | 0.0098          | 0.9760    | 0.9741 | 0.9750 | 0.9965   |


### Framework versions

- Transformers 4.24.0
- Pytorch 1.13.0+cu117
- Datasets 2.7.0
- Tokenizers 0.13.2