File size: 12,702 Bytes
2a5693e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
# Copyright 2020 - 2022 MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#     http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import warnings
warnings.filterwarnings("ignore", category=FutureWarning, module="transformers.utils.generic")

import argparse
import os
import numpy as np
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.nn.parallel
import torch.utils.data.distributed
from optimizers.lr_scheduler import LinearWarmupCosineAnnealingLR
from trainer import run_training
from utils.data_utils import get_loader
from monai.losses import DiceLoss
from monai.metrics import DiceMetric
from utils.textswin_unetr import TextSwinUNETR
from monai.transforms import Activations, AsDiscrete, Compose
from monai.utils.enums import MetricReduction
import random


parser = argparse.ArgumentParser(description="TextBraTS segmentation pipeline for TextBRATS image-text dataset")
parser.add_argument("--checkpoint", default=None, help="start training from saved checkpoint")
parser.add_argument("--logdir", default="TextBraTS", type=str, help="directory to save the tensorboard logs")
parser.add_argument("--fold", default=0, type=int, help="data fold, 0 for validation and 1 for training")
parser.add_argument("--pretrained_model_name", default="model.pt", type=str, help="pretrained model name")
parser.add_argument("--data_dir", default="./data/TextBraTSData", type=str, help="dataset directory")
parser.add_argument("--json_list", default="./Train.json", type=str, help="dataset json file")
parser.add_argument("--save_checkpoint", action="store_true", help="save checkpoint during training")
parser.add_argument("--max_epochs", default=200, type=int, help="max number of training epochs")
parser.add_argument("--batch_size", default=2, type=int, help="number of batch size")
parser.add_argument("--sw_batch_size", default=4, type=int, help="number of sliding window batch size")
parser.add_argument("--optim_lr", default=1e-4, type=float, help="optimization learning rate")
parser.add_argument("--optim_name", default="adamw", type=str, help="optimization algorithm")
parser.add_argument("--reg_weight", default=1e-5, type=float, help="regularization weight")
parser.add_argument("--momentum", default=0.99, type=float, help="momentum")
parser.add_argument("--noamp", action="store_true", help="do NOT use amp for training")
parser.add_argument("--val_every", default=1, type=int, help="validation frequency")
parser.add_argument("--distributed", action="store_true", help="start distributed training")
parser.add_argument("--world_size", default=1, type=int, help="number of nodes for distributed training")
parser.add_argument("--rank", default=0, type=int, help="node rank for distributed training")
parser.add_argument("--dist-url", default="tcp://127.0.0.1:23456", type=str, help="distributed url")
parser.add_argument("--dist-backend", default="nccl", type=str, help="distributed backend")
parser.add_argument("--norm_name", default="instance", type=str, help="normalization name")
parser.add_argument("--workers", default=8, type=int, help="number of workers")
parser.add_argument("--feature_size", default=48, type=int, help="feature size")
parser.add_argument("--in_channels", default=4, type=int, help="number of input channels")
parser.add_argument("--out_channels", default=3, type=int, help="number of output channels")
parser.add_argument("--cache_dataset", action="store_true", help="use monai Dataset class")
parser.add_argument("--a_min", default=-175.0, type=float, help="a_min in ScaleIntensityRanged")
parser.add_argument("--a_max", default=250.0, type=float, help="a_max in ScaleIntensityRanged")
parser.add_argument("--b_min", default=0.0, type=float, help="b_min in ScaleIntensityRanged")
parser.add_argument("--b_max", default=1.0, type=float, help="b_max in ScaleIntensityRanged")
parser.add_argument("--space_x", default=1.5, type=float, help="spacing in x direction")
parser.add_argument("--space_y", default=1.5, type=float, help="spacing in y direction")
parser.add_argument("--space_z", default=2.0, type=float, help="spacing in z direction")
parser.add_argument("--roi_x", default=128, type=int, help="roi size in x direction")
parser.add_argument("--roi_y", default=128, type=int, help="roi size in y direction")
parser.add_argument("--roi_z", default=128, type=int, help="roi size in z direction")
parser.add_argument("--dropout_rate", default=0.0, type=float, help="dropout rate")
parser.add_argument("--dropout_path_rate", default=0.0, type=float, help="drop path rate")
parser.add_argument("--RandScaleIntensityd_prob", default=0.1, type=float, help="RandScaleIntensityd aug probability")
parser.add_argument("--RandShiftIntensityd_prob", default=0.1, type=float, help="RandShiftIntensityd aug probability")
parser.add_argument("--infer_overlap", default=0.5, type=float, help="sliding window inference overlap")
parser.add_argument("--lrschedule", default="warmup_cosine", type=str, help="type of learning rate scheduler")
parser.add_argument("--warmup_epochs", default=50, type=int, help="number of warmup epochs")
parser.add_argument("--resume_ckpt", action="store_true", help="resume training from pretrained checkpoint")
parser.add_argument("--smooth_dr", default=1e-6, type=float, help="constant added to dice denominator to avoid nan")
parser.add_argument("--smooth_nr", default=0.0, type=float, help="constant added to dice numerator to avoid zero")
parser.add_argument("--use_checkpoint", action="store_true", help="use gradient checkpointing to save memory")
parser.add_argument("--spatial_dims", default=3, type=int, help="spatial dimension of input data")
parser.add_argument("--use_ssl_pretrained", action="store_true", help="use SSL pretrained ckpt")
parser.add_argument(
    "--pretrained_dir",
    default="./runs/TextBraTS/",
    type=str,
    help="pretrained checkpoint directory",
)
parser.add_argument("--squared_dice", action="store_true", help="use squared Dice")
parser.add_argument("--seed", type=int, default=23,help="use random seed")


def main():
    args = parser.parse_args()
    args.amp = not args.noamp
    args.logdir = "./runs/" + args.logdir
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.distributed:
        torch.cuda.manual_seed_all(args.seed)
        args.ngpus_per_node = torch.cuda.device_count()
        print("Found total gpus", args.ngpus_per_node)
        args.world_size = args.ngpus_per_node * args.world_size
        mp.spawn(main_worker, nprocs=args.ngpus_per_node, args=(args,))
    else:
        torch.cuda.manual_seed(args.seed)
        main_worker(gpu=0, args=args)


def main_worker(gpu, args):
    if args.distributed:
        torch.multiprocessing.set_start_method("fork", force=True)
    np.set_printoptions(formatter={"float": "{: 0.3f}".format}, suppress=True)
    args.gpu = gpu
    if args.distributed:
        args.rank = args.rank * args.ngpus_per_node + gpu
        dist.init_process_group(
            backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank
        )
    torch.cuda.set_device(args.gpu)
    torch.backends.cudnn.benchmark = True
    args.test_mode = False
    loader = get_loader(args)
    print(args.rank, " gpu", args.gpu)
    if args.rank == 0:
        print("Batch size is:", args.batch_size, "epochs", args.max_epochs)
    pretrained_dir = args.pretrained_dir
    model_name = args.pretrained_model_name
    pretrained_pth = os.path.join(pretrained_dir, model_name)

    model = TextSwinUNETR(
        img_size=(args.roi_x, args.roi_y, args.roi_z),
        in_channels=args.in_channels,
        out_channels=args.out_channels,
        feature_size=args.feature_size,
        use_checkpoint=args.use_checkpoint,
        text_dim=768,
    )

    if args.resume_ckpt:
        model_dict = torch.load(pretrained_pth)["state_dict"]
        for key in list(model_dict.keys()):
            model_dict[key.replace("module.", "")] = model_dict.pop(key)
        model.load_state_dict(model_dict,strict=True)
        print("Using pretrained weights")

    if args.use_ssl_pretrained:
        try:
            model_dict = torch.load("/media/iipl/disk1/swinunetr/model_swinvit.pt",weights_only=True)
            state_dict = model_dict["state_dict"]
            # fix potential differences in state dict keys from pre-training to
            # fine-tuning
            for key in list(state_dict.keys()):
                state_dict[key.replace("module.", "swinViT.")] = state_dict.pop(key)
            for key in list(state_dict.keys()):
                if "fc" in key:
                    state_dict[key.replace("fc","linear")] = state_dict.pop(key)
                if "patch_embed" in key:
                    state_dict[key.replace("patch_embed","")] = state_dict.pop(key)
            model.load_state_dict(state_dict, strict=False)
        except ValueError:
            raise ValueError("Self-supervised pre-trained weights not available for" + str(args.model_name))

    if args.squared_dice:
        dice_loss = DiceLoss(
            to_onehot_y=False, sigmoid=True, squared_pred=True, smooth_nr=args.smooth_nr, smooth_dr=args.smooth_dr
        )
    else:
        dice_loss = DiceLoss(to_onehot_y=False, sigmoid=True)
    post_sigmoid = Activations(sigmoid=True)
    post_pred = AsDiscrete(argmax=False, logit_thresh=0.5)
    dice_acc = DiceMetric(include_background=True, reduction=MetricReduction.MEAN_BATCH, get_not_nans=True)
    pytorch_total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
    print("Total parameters count", pytorch_total_params)

    best_acc = 0
    start_epoch = 0

    if args.checkpoint is not None:
        checkpoint = torch.load(args.checkpoint, map_location="cpu")
        from collections import OrderedDict

        new_state_dict = OrderedDict()
        for k, v in checkpoint["state_dict"].items():
            new_state_dict[k.replace("backbone.", "")] = v
        model.load_state_dict(new_state_dict, strict=False)
        if "epoch" in checkpoint:
            start_epoch = checkpoint["epoch"]
        if "best_acc" in checkpoint:
            best_acc = checkpoint["best_acc"]
        print("=> loaded checkpoint '{}' (epoch {}) (bestacc {})".format(args.checkpoint, start_epoch, best_acc))

    model.cuda(args.gpu)

    if args.distributed:
        torch.cuda.set_device(args.gpu)
        if args.norm_name == "batch":
            model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
        model.cuda(args.gpu)
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], output_device=args.gpu, find_unused_parameters = False,)
    if args.optim_name == "adam":
        optimizer = torch.optim.Adam(model.parameters(), lr=args.optim_lr, weight_decay=args.reg_weight)
    elif args.optim_name == "adamw":
        optimizer = torch.optim.AdamW(model.parameters(), lr=args.optim_lr, weight_decay=args.reg_weight)
    elif args.optim_name == "sgd":
        optimizer = torch.optim.SGD(
            model.parameters(), lr=args.optim_lr, momentum=args.momentum, nesterov=True, weight_decay=args.reg_weight
        )
    else:
        raise ValueError("Unsupported Optimization Procedure: " + str(args.optim_name))

    if args.lrschedule == "warmup_cosine":
        scheduler = LinearWarmupCosineAnnealingLR(
            optimizer, warmup_epochs=args.warmup_epochs, max_epochs=args.max_epochs
        )
    elif args.lrschedule == "cosine_anneal":
        scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=args.max_epochs)
        if args.checkpoint is not None:
            scheduler.step(epoch=start_epoch)
    else:
        scheduler = None

    semantic_classes = ["Dice_Val_TC", "Dice_Val_WT", "Dice_Val_ET"]

    accuracy = run_training(
        model=model,
        train_loader=loader[0],
        val_loader=loader[1],
        optimizer=optimizer,
        loss_func=dice_loss,
        acc_func=dice_acc,
        args=args,
        scheduler=scheduler,
        start_epoch=start_epoch,
        post_sigmoid=post_sigmoid,
        post_pred=post_pred,
        semantic_classes=semantic_classes,
    )
    return accuracy


if __name__ == "__main__":
    main()