PyTorch
llama
alignment-handbook
Generated from Trainer
File size: 3,147 Bytes
2804acb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4aff970
 
2804acb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
662b383
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
base_model: JunxiongWang/llama3_0_75_mamba2_sft
tags:
- alignment-handbook
- generated_from_trainer
datasets:
- HuggingFaceH4/ultrafeedback_binarized
- HuggingFaceH4/orca_dpo_pairs
- JunxiongWang/llama3-ultrafeedback-armorm
model-index:
- name: JunxiongWang/Mamba2InLlama_0_75
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

Please check [here](https://github.com/jxiw/MambaInLlama/tree/main) for details.

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/junxiong12/huggingface/runs/24l27qc0)
# JunxiongWang/Mamba2InLlama_0_75

This model is a fine-tuned version of [JunxiongWang/llama3_0_75_mamba2_sft]() on the HuggingFaceH4/ultrafeedback_binarized, the HuggingFaceH4/orca_dpo_pairs and the JunxiongWang/llama3-ultrafeedback-armorm datasets.
It achieves the following results on the evaluation set:
- Loss: 0.4695
- Rewards/chosen: -1.5489
- Rewards/rejected: -2.8730
- Rewards/accuracies: 0.8107
- Rewards/margins: 1.3240
- Logps/rejected: -589.1575
- Logps/chosen: -449.6615
- Logits/rejected: 1.1678
- Logits/chosen: 1.2259

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 32
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.494         | 0.4798 | 2000 | 0.4938          | -1.4838        | -2.6084          | 0.7911             | 1.1246          | -562.7021      | -443.1515    | 1.1609          | 1.2167        |
| 0.4911        | 0.9597 | 4000 | 0.4695          | -1.5489        | -2.8730          | 0.8107             | 1.3240          | -589.1575      | -449.6615    | 1.1678          | 1.2259        |


### Framework versions

- Transformers 4.43.1
- Pytorch 2.1.1+cu118
- Datasets 2.20.0
- Tokenizers 0.19.1


[MambaInLlama](arxiv.org/abs/2408.15237)

```
@article{junxiongdaniele2024mambainllama,
  title   = {The Mamba in the Llama: Distilling and Accelerating Hybrid Models},
  author  = {Junxiong Wang and Daniele Paliotta and Avner May and Alexander M. Rush and Tri Dao},
  journal = {arXiv preprint arXiv:2408.15237},
  year    = {2024}
}
```