File size: 1,720 Bytes
3db2b26
 
 
2c1c3e8
 
3db2b26
 
 
 
 
 
 
 
 
 
 
2c1c3e8
b53669d
 
 
 
3db2b26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c65d1a
2c1c3e8
3db2b26
 
 
2c1c3e8
3c65d1a
3db2b26
 
 
b53669d
 
 
 
 
 
 
3db2b26
 
 
 
2c1c3e8
3db2b26
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: BERT2BERT_pretrained_LC-QuAD_2.0
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# BERT2BERT_pretrained_LC-QuAD_2.0

This model was trained from scratch on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0810
- Bleu: 74.7723
- Em: 0.0349
- Gen Len: 46.1685

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2500
- num_epochs: 8.0

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Bleu    | Em     | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|
| 6.9199        | 1.4   | 2000  | 6.3751          | 3.4801  | 0.0    | 220.966 |
| 3.0222        | 2.8   | 4000  | 2.8796          | 27.8543 | 0.0    | 36.8    |
| 1.5982        | 4.19  | 6000  | 1.7495          | 56.0747 | 0.0017 | 43.9021 |
| 1.0717        | 5.59  | 8000  | 1.2625          | 69.9606 | 0.0199 | 46.0722 |
| 0.7765        | 6.99  | 10000 | 1.0810          | 74.7723 | 0.0349 | 46.1685 |


### Framework versions

- Transformers 4.30.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3