File size: 2,007 Bytes
1937f42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: BERT2BERT_finetuned
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# BERT2BERT_finetuned

This model is a fine-tuned version of [JulienRPA/BERT2BERT_pretrained_LC-QuAD_2.0](https://huggingface.co/JulienRPA/BERT2BERT_pretrained_LC-QuAD_2.0) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4253
- Bleu: 95.481
- Em: 0.6019
- Rm: 0.6547
- Gen Len: 80.4676

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 300.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Bleu    | Em     | Rm     | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:------:|:-------:|
| 2.9129        | 50.0  | 1000 | 0.3861          | 92.7571 | 0.2302 | 0.2422 | 79.2806 |
| 0.052         | 100.0 | 2000 | 0.3532          | 95.3257 | 0.5156 | 0.5635 | 80.6859 |
| 0.0155        | 150.0 | 3000 | 0.4280          | 94.8017 | 0.5659 | 0.6355 | 79.3165 |
| 0.0086        | 200.0 | 4000 | 0.4077          | 95.5885 | 0.5803 | 0.6283 | 80.6978 |
| 0.0051        | 250.0 | 5000 | 0.4169          | 95.5923 | 0.6019 | 0.6523 | 80.6523 |
| 0.0038        | 300.0 | 6000 | 0.4253          | 95.481  | 0.6019 | 0.6547 | 80.4676 |


### Framework versions

- Transformers 4.30.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3