File size: 2,007 Bytes
1937f42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: BERT2BERT_finetuned
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BERT2BERT_finetuned
This model is a fine-tuned version of [JulienRPA/BERT2BERT_pretrained_LC-QuAD_2.0](https://huggingface.co/JulienRPA/BERT2BERT_pretrained_LC-QuAD_2.0) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4253
- Bleu: 95.481
- Em: 0.6019
- Rm: 0.6547
- Gen Len: 80.4676
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 300.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Em | Rm | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:------:|:-------:|
| 2.9129 | 50.0 | 1000 | 0.3861 | 92.7571 | 0.2302 | 0.2422 | 79.2806 |
| 0.052 | 100.0 | 2000 | 0.3532 | 95.3257 | 0.5156 | 0.5635 | 80.6859 |
| 0.0155 | 150.0 | 3000 | 0.4280 | 94.8017 | 0.5659 | 0.6355 | 79.3165 |
| 0.0086 | 200.0 | 4000 | 0.4077 | 95.5885 | 0.5803 | 0.6283 | 80.6978 |
| 0.0051 | 250.0 | 5000 | 0.4169 | 95.5923 | 0.6019 | 0.6523 | 80.6523 |
| 0.0038 | 300.0 | 6000 | 0.4253 | 95.481 | 0.6019 | 0.6547 | 80.4676 |
### Framework versions
- Transformers 4.30.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
|