File size: 1,643 Bytes
e36d41a
68c6a66
 
 
be00e89
68c6a66
 
 
e36d41a
 
68c6a66
 
e36d41a
68c6a66
e36d41a
be00e89
68c6a66
be00e89
e36d41a
68c6a66
e36d41a
68c6a66
e36d41a
68c6a66
e36d41a
68c6a66
e36d41a
68c6a66
e36d41a
68c6a66
e36d41a
68c6a66
e36d41a
68c6a66
e36d41a
68c6a66
 
ac39df1
68c6a66
 
 
ac39df1
68c6a66
 
 
be00e89
68c6a66
e36d41a
68c6a66
e36d41a
be00e89
 
 
 
 
 
 
 
e36d41a
 
68c6a66
e36d41a
68c6a66
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
tags:
- generated_from_trainer
datasets:
- common_voice_17_0
model-index:
- name: wav2vec2-large-xls-r-300m-ipa
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-large-xls-r-300m-ipa

This model was trained from scratch on the common_voice_17_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7900

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 34
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 68
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 15
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss |
|:-------------:|:-------:|:----:|:---------------:|
| 7.2967        | 2.2222  | 50   | 7.3217          |
| 3.9212        | 4.4444  | 100  | 4.1064          |
| 3.2366        | 6.6667  | 150  | 3.3641          |
| 3.1466        | 8.8889  | 200  | 3.3592          |
| 3.0562        | 11.1111 | 250  | 3.1385          |
| 0.6813        | 13.3333 | 300  | 0.7900          |


### Framework versions

- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1