File size: 1,643 Bytes
e36d41a 68c6a66 be00e89 68c6a66 e36d41a 68c6a66 e36d41a 68c6a66 e36d41a be00e89 68c6a66 be00e89 e36d41a 68c6a66 e36d41a 68c6a66 e36d41a 68c6a66 e36d41a 68c6a66 e36d41a 68c6a66 e36d41a 68c6a66 e36d41a 68c6a66 e36d41a 68c6a66 e36d41a 68c6a66 ac39df1 68c6a66 ac39df1 68c6a66 be00e89 68c6a66 e36d41a 68c6a66 e36d41a be00e89 e36d41a 68c6a66 e36d41a 68c6a66 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
---
tags:
- generated_from_trainer
datasets:
- common_voice_17_0
model-index:
- name: wav2vec2-large-xls-r-300m-ipa
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-ipa
This model was trained from scratch on the common_voice_17_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7900
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 34
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 68
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 15
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-------:|:----:|:---------------:|
| 7.2967 | 2.2222 | 50 | 7.3217 |
| 3.9212 | 4.4444 | 100 | 4.1064 |
| 3.2366 | 6.6667 | 150 | 3.3641 |
| 3.1466 | 8.8889 | 200 | 3.3592 |
| 3.0562 | 11.1111 | 250 | 3.1385 |
| 0.6813 | 13.3333 | 300 | 0.7900 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|