|
import json |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
from typing import Dict, List, Any |
|
|
|
|
|
|
|
|
|
class EndpointHandler: |
|
def __init__(self, path: str = ""): |
|
self.tokenizer = AutoTokenizer.from_pretrained(path) |
|
self.model = AutoModelForCausalLM.from_pretrained( |
|
path, |
|
torch_dtype=torch.bfloat16, |
|
device_map="auto" |
|
) |
|
self.model.eval() |
|
|
|
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]: |
|
inputs = data.get("inputs", "") |
|
parameters = data.get("parameters", {}) |
|
input_ids = self.tokenizer(inputs, return_tensors="pt").input_ids.to(self.model.device) |
|
max_length = parameters.get("max_length", 100) |
|
temperature = parameters.get("temperature", 1.0) |
|
top_p = parameters.get("top_p", 1.0) |
|
do_sample = parameters.get("do_sample", True) |
|
with torch.no_grad(): |
|
outputs = self.model.generate( |
|
input_ids, |
|
max_length=max_length, |
|
temperature=temperature, |
|
top_p=top_p, |
|
do_sample=do_sample, |
|
pad_token_id=self.tokenizer.pad_token_id, |
|
eos_token_id=self.tokenizer.eos_token_id |
|
) |
|
generated_text = self.tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
return {"generated_text": generated_text} |