import json import torch from transformers import AutoTokenizer, AutoModelForCausalLM from typing import Dict, List, Any # Replace with actual GraniteMoeForCausalLM import if available # from granitemoe import GraniteMoeForCausalLM class EndpointHandler: def __init__(self, path: str = ""): self.tokenizer = AutoTokenizer.from_pretrained(path) self.model = AutoModelForCausalLM.from_pretrained( path, torch_dtype=torch.bfloat16, device_map="auto" ) self.model.eval() def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]: inputs = data.get("inputs", "") parameters = data.get("parameters", {}) input_ids = self.tokenizer(inputs, return_tensors="pt").input_ids.to(self.model.device) max_length = parameters.get("max_length", 100) temperature = parameters.get("temperature", 1.0) top_p = parameters.get("top_p", 1.0) do_sample = parameters.get("do_sample", True) with torch.no_grad(): outputs = self.model.generate( input_ids, max_length=max_length, temperature=temperature, top_p=top_p, do_sample=do_sample, pad_token_id=self.tokenizer.pad_token_id, eos_token_id=self.tokenizer.eos_token_id ) generated_text = self.tokenizer.decode(outputs[0], skip_special_tokens=True) return {"generated_text": generated_text}