JoshuaKelleyDs's picture
Model save
3023363 verified
|
raw
history blame
2.29 kB
---
license: other
base_model: apple/mobilevit-small
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: quickdraw-MobileViT-small-a
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# quickdraw-MobileViT-small-a
This model is a fine-tuned version of [apple/mobilevit-small](https://huggingface.co/apple/mobilevit-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9705
- Accuracy: 0.7556
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0008
- train_batch_size: 512
- eval_batch_size: 512
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5000
- num_epochs: 8
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:-----:|:---------------:|:--------:|
| 1.464 | 0.5688 | 5000 | 1.4063 | 0.6493 |
| 1.2318 | 1.1377 | 10000 | 1.2154 | 0.6937 |
| 1.1699 | 1.7065 | 15000 | 1.1495 | 0.7096 |
| 1.1018 | 2.2753 | 20000 | 1.1081 | 0.7190 |
| 1.0837 | 2.8441 | 25000 | 1.0871 | 0.7240 |
| 1.0343 | 3.4130 | 30000 | 1.0550 | 0.7326 |
| 1.0198 | 3.9818 | 35000 | 1.0281 | 0.739 |
| 0.9795 | 4.5506 | 40000 | 1.0125 | 0.7435 |
| 0.9339 | 5.1195 | 45000 | 0.9964 | 0.7475 |
| 0.9292 | 5.6883 | 50000 | 0.9843 | 0.7510 |
| 0.8975 | 6.2571 | 55000 | 0.9795 | 0.7528 |
| 0.8957 | 6.8259 | 60000 | 0.9723 | 0.7548 |
| 0.8721 | 7.3948 | 65000 | 0.9716 | 0.7555 |
| 0.8725 | 7.9636 | 70000 | 0.9705 | 0.7556 |
### Framework versions
- Transformers 4.41.0
- Pytorch 2.2.1
- Datasets 2.19.1
- Tokenizers 0.19.1