File size: 7,569 Bytes
7c071a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
import argparse
import time
from transformers import AutoTokenizer
class Qwen1_5():
def __init__(self, args):
# devid
self.devices = [int(d) for d in args.devid.split(",")]
# load tokenizer
print("Load " + args.tokenizer_path + " ...")
self.tokenizer = AutoTokenizer.from_pretrained(
args.tokenizer_path, trust_remote_code=True
)
# warm up
self.tokenizer.decode([0])
# preprocess parameters, such as prompt & tokenizer
self.system_prompt = "You are a helpful assistant."
self.history = [{"role": "system", "content": self.system_prompt}]
self.EOS = self.tokenizer.eos_token_id
self.enable_history = args.enable_history
# load model
self.load_model(args)
def load_model(self, args):
if len(self.devices) > 1:
import chat_parallel
self.model = chat_parallel.Qwen()
self.model.init(
self.devices,
self.tokenizer.im_end_id,
args.model_path
)
else:
import chat
self.model = chat.Qwen()
self.model.init(self.devices, args.model_path)
self.model.temperature = args.temperature
self.model.top_p = args.top_p
self.model.repeat_penalty = args.repeat_penalty
self.model.repeat_last_n = args.repeat_last_n
self.model.max_new_tokens = args.max_new_tokens
self.model.generation_mode = args.generation_mode
self.model.prompt_mode = args.prompt_mode
self.SEQLEN = self.model.SEQLEN
def clear(self):
self.history = [{"role": "system", "content": self.system_prompt}]
def update_history(self):
if self.model.token_length >= self.SEQLEN:
print("... (reach the maximal length)", flush=True, end="")
self.history = [{"role": "system", "content": self.system_prompt}]
else:
self.history.append({"role": "assistant", "content": self.answer_cur})
def encode_tokens(self):
self.history.append({"role": "user", "content": self.input_str})
text = self.tokenizer.apply_chat_template(
self.history, tokenize=False, add_generation_prompt=True
)
tokens = self.tokenizer(text).input_ids
return tokens
def chat(self):
"""
Start a chat session.
"""
# Instruct
print(
"""\n=================================================================
1. If you want to quit, please enter one of [q, quit, exit]
2. To create a new chat session, please enter one of [clear, new]
================================================================="""
)
# Stop Chatting with "exit" input
while True:
self.input_str = input("\nQuestion: ")
# Quit
if self.input_str in ["exit", "q", "quit"]:
break
# New Chat
elif self.input_str in ["clear", "new"]:
self.clear()
# Chat
else:
tokens = self.encode_tokens()
# check tokens
if not tokens:
print("Sorry: your question is empty!!")
return
if len(tokens) > self.SEQLEN:
print(
"The maximum question length should be shorter than {} but we get {} instead.".format(
self.SEQLEN, len(tokens)
)
)
return
print("\nAnswer: ", end="")
self.stream_answer(tokens)
def stream_answer(self, tokens):
"""
Stream the answer for the given tokens.
"""
tok_num = 0
self.answer_cur = ""
self.answer_token = []
# First token
first_start = time.time()
token = self.model.forward_first(tokens)
first_end = time.time()
# Following tokens
while token != self.EOS and self.model.token_length < self.SEQLEN:
word = self.tokenizer.decode(token, skip_special_tokens=True)
self.answer_token += [token]
print(word, flush=True, end="")
tok_num += 1
token = self.model.forward_next()
self.answer_cur = self.tokenizer.decode(self.answer_token)
# counting time
next_end = time.time()
first_duration = first_end - first_start
next_duration = next_end - first_end
tps = tok_num / next_duration
if self.enable_history:
self.update_history()
else:
self.clear()
print()
print(f"FTL: {first_duration:.3f} s")
print(f"TPS: {tps:.3f} token/s")
## For Web Demo
def stream_predict(self, query):
"""
Stream the prediction for the given query.
"""
self.answer_cur = ""
self.input_str = query
tokens = self.encode_tokens()
for answer_cur, history in self._generate_predictions(tokens):
yield answer_cur, history
def _generate_predictions(self, tokens):
"""
Generate predictions for the given tokens.
"""
# First token
next_token = self.model.forward_first(tokens)
output_tokens = [next_token]
# Following tokens
while True:
next_token = self.model.forward_next()
if next_token == self.EOS:
break
output_tokens += [next_token]
self.answer_cur = self.tokenizer.decode(output_tokens)
if self.model.token_length >= self.SEQLEN:
self.update_history()
yield self.answer_cur + "\n\n\nReached the maximum length; The history context has been cleared.", self.history
break
else:
yield self.answer_cur, self.history
self.update_history()
def main(args):
model = Qwen1_5(args)
model.chat()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('-m', '--model_path', type=str, required=True, help='path to the bmodel file')
parser.add_argument('-t', '--tokenizer_path', type=str, default="../support/token_config", help='path to the tokenizer file')
parser.add_argument('-d', '--devid', type=str, default='0', help='device ID to use')
parser.add_argument('--temperature', type=float, default=1.0, help='temperature scaling factor for the likelihood distribution')
parser.add_argument('--top_p', type=float, default=1.0, help='cumulative probability of token words to consider as a set of candidates')
parser.add_argument('--repeat_penalty', type=float, default=1.0, help='penalty for repeated tokens')
parser.add_argument('--repeat_last_n', type=int, default=32, help='repeat penalty for recent n tokens')
parser.add_argument('--max_new_tokens', type=int, default=1024, help='max new token length to generate')
parser.add_argument('--generation_mode', type=str, choices=["greedy", "penalty_sample"], default="greedy", help='mode for generating next token')
parser.add_argument('--prompt_mode', type=str, choices=["prompted", "unprompted"], default="prompted", help='use prompt format or original input')
parser.add_argument('--enable_history', action='store_true', help="if set, enables storing of history memory.")
args = parser.parse_args()
main(args)
|