File size: 4,507 Bytes
71ae6c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from torch_geometric.nn import GCNConv
class TransNAR(nn.Module):
def __init__(self, input_dim, output_dim, embed_dim, num_heads, num_layers, ffn_dim, dropout=0.1):
super(TransNAR, self).__init__()
# Camada de Embedding
self.embedding = nn.Linear(input_dim, embed_dim)
self.pos_encoding = PositionalEncoding(embed_dim, dropout)
# Camadas Transformer
self.transformer_layers = nn.ModuleList([
TransformerLayer(embed_dim, num_heads, ffn_dim, dropout)
for _ in range(num_layers)
])
# Neural Algorithmic Reasoner (NAR)
self.nar = NAR(embed_dim)
# Cross-Attention Layer
self.cross_attention = nn.MultiheadAttention(embed_dim, num_heads, dropout=dropout)
# Decodificador
self.decoder = nn.Linear(embed_dim, output_dim)
# Camada de normalização final
self.final_norm = nn.LayerNorm(output_dim)
def forward(self, x, edge_index, edge_attr):
# Embedding e codificação posicional
x = self.embedding(x)
x = self.pos_encoding(x)
# Camadas Transformer
for layer in self.transformer_layers:
x = layer(x)
# Neural Algorithmic Reasoner
nar_output = self.nar(x, edge_index, edge_attr)
# Cross-Attention between Transformer and NAR outputs
cross_attn_output, _ = self.cross_attention(x, nar_output, nar_output)
# Decodificação
output = self.decoder(cross_attn_output)
# Normalização final
output = self.final_norm(output)
return output
class TransformerLayer(nn.Module):
def __init__(self, embed_dim, num_heads, ffn_dim, dropout=0.1):
super(TransformerLayer, self).__init__()
self.self_attn = nn.MultiheadAttention(embed_dim, num_heads, dropout=dropout)
self.ffn = nn.Sequential(
nn.Linear(embed_dim, ffn_dim),
nn.ReLU(),
nn.Linear(ffn_dim, embed_dim)
)
self.norm1 = nn.LayerNorm(embed_dim)
self.norm2 = nn.LayerNorm(embed_dim)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
# Atenção
attn_output, _ = self.self_attn(x, x, x)
x = x + self.dropout(attn_output)
x = self.norm1(x)
# Feedforward
ffn_output = self.ffn(x)
x = x + self.dropout(ffn_output)
x = self.norm2(x)
return x
class NAR(nn.Module):
def __init__(self, embed_dim):
super(NAR, self).__init__()
self.gcn1 = GCNConv(embed_dim, embed_dim * 2)
self.gcn2 = GCNConv(embed_dim * 2, embed_dim)
self.gru = nn.GRU(embed_dim, embed_dim, batch_first=True)
def forward(self, x, edge_index, edge_attr):
x = F.relu(self.gcn1(x, edge_index))
x = self.gcn2(x, edge_index)
output, _ = self.gru(x.unsqueeze(1))
return output.squeeze(1)
class PositionalEncoding(nn.Module):
def __init__(self, embed_dim, dropout=0.1, max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
# Inicializa o tensor de codificação posicional
pe = torch.zeros(max_len, embed_dim)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, embed_dim, 2).float() * (-math.log(10000.0) / embed_dim))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0, 1)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + self.pe[:x.size(0), :].to(x.device)
return self.dropout(x)
# Exemplo de uso
input_dim = 100
output_dim = 50
embed_dim = 256
num_heads = 8
num_layers = 6
ffn_dim = 1024
model = TransNAR(input_dim, output_dim, embed_dim, num_heads, num_layers, ffn_dim)
input_data = torch.randn(32, 100, input_dim)
edge_index = torch.tensor([[0, 1], [1, 0]]) # Example edge index
edge_attr = torch.randn(edge_index.size(1)) # Example edge attributes
output = model(input_data, edge_index, edge_attr)
print(output.shape) # Deve imprimir torch.Size([32, 100, 50])
|