JorgeGIT's picture
Model save
91eb559
|
raw
history blame
2.74 kB
metadata
license: apache-2.0
base_model: facebook/convnext-tiny-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: finetuned-Leukemia-cell
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9661654135338346

finetuned-Leukemia-cell

This model is a fine-tuned version of facebook/convnext-tiny-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1249
  • Accuracy: 0.9662

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3396 2.94 100 0.2611 0.9060
0.2488 5.88 200 0.2651 0.9173
0.1783 8.82 300 0.1906 0.9323
0.0837 11.76 400 0.1773 0.9511
0.0934 14.71 500 0.2027 0.9361
0.1283 17.65 600 0.0602 0.9737
0.06 20.59 700 0.1383 0.9624
0.024 23.53 800 0.0773 0.9737
0.0446 26.47 900 0.1669 0.9549
0.0342 29.41 1000 0.1320 0.9624
0.0458 32.35 1100 0.1128 0.9662
0.0394 35.29 1200 0.2099 0.9436
0.0593 38.24 1300 0.0890 0.9774
0.0346 41.18 1400 0.1216 0.9662
0.0535 44.12 1500 0.1303 0.9662
0.0139 47.06 1600 0.1195 0.9624
0.0476 50.0 1700 0.1249 0.9662

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0