File size: 3,197 Bytes
7da7cac 7ad8e3d 7da7cac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
---
language: ca
tags:
- "catalan"
metrics:
- accuracy
widget:
- text: "Ets més petita que un barrufet!!"
- text: "Ets tan lletja que et donaven de menjar per sota la porta."
---
# roberta-base-ca-finetuned-cyberbullying-catalan
This model is a fine-tuned version of [BSC-TeMU/roberta-base-ca](https://huggingface.co/BSC-TeMU/roberta-base-ca) on the dataset generated scrapping all social networks (Twitter, Youtube ...) to detect cyberbullying on Catalan.
It achieves the following results on the evaluation set:
- Loss: 0.1508
- Accuracy: 0.9665
## Training and evaluation data
I use the concatenation from multiple datasets generated scrapping social networks (Twitter,Youtube,Discord...) to fine-tune this model. The total number of sentence pairs is above 410k sentences. Trained similar method at [roberta-base-bne-finetuned-cyberbullying-spanish](https://huggingface.co/JonatanGk/roberta-base-bne-finetuned-cyberbullying-spanish)
## Training procedure
<details>
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
</details>
### Model in action 🚀
Fast usage with **pipelines**:
```python
from transformers import pipeline
model_path = "JonatanGk/roberta-base-ca-finetuned-ciberbullying-catalan"
bullying_analysis = pipeline("text-classification", model=model_path, tokenizer=model_path)
bullying_analysis(
"Des que et vaig veure m'en vaig enamorar de tu."
)
# Output:
[{'label': 'Not_bullying', 'score': 0.9996786117553711}]
bullying_analysis(
"Ets tan lletja que et donaven de menjar per sota la porta."
)
# Output:
[{'label': 'Bullying', 'score': 0.9927878975868225}]
```
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/JonatanGk/Shared-Colab/blob/master/Cyberbullying_detection_(CATALAN).ipynb)
### Framework versions
- Transformers 4.10.3
- Pytorch 1.9.0+cu102
- Datasets 1.12.1
- Tokenizers 0.10.3
## Citation
```bibtex
@inproceedings{armengol-estape-etal-2021-multilingual,
title = "Are Multilingual Models the Best Choice for Moderately Under-resourced Languages? {A} Comprehensive Assessment for {C}atalan",
author = "Armengol-Estap{\'e}, Jordi and
Carrino, Casimiro Pio and
Rodriguez-Penagos, Carlos and
de Gibert Bonet, Ona and
Armentano-Oller, Carme and
Gonzalez-Agirre, Aitor and
Melero, Maite and
Villegas, Marta",
booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.findings-acl.437",
doi = "10.18653/v1/2021.findings-acl.437",
pages = "4933--4946",
}
```
> Special thx to [Manuel Romero/@mrm8488](https://huggingface.co/mrm8488) as my mentor & R.C.
> Created by [Jonatan Luna](https://JonatanGk.github.io) | [LinkedIn](https://www.linkedin.com/in/JonatanGk/)
|