File size: 3,389 Bytes
7bd2834
 
 
 
 
 
 
 
 
fd161f6
 
 
 
174d920
fd161f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f958db
 
fd161f6
0f958db
fd161f6
 
 
 
 
 
 
 
 
 
 
0f958db
 
 
 
 
 
 
 
 
fd161f6
 
0f958db
 
fd161f6
0f958db
 
 
fd161f6
0f958db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd161f6
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
---
license: mit
language:
- zh
base_model:
- joeddav/xlm-roberta-large-xnli
pipeline_tag: text-classification
tags:
- emotion
---
# chinese-text-emotion-classifier

## 📚 模型簡介
本模型基於[joeddav/xlm-roberta-large-xnli](https://huggingface.co/joeddav/xlm-roberta-large-xnli) 模型進行微調,專注於 **中文語句情感分析**。  
通過微調,模型可以識別以下 8 種情緒標籤:
- **平淡語氣**
- **關切語調**
- **開心語調**
- **憤怒語調**
- **悲傷語調**
- **疑問語調**
- **驚奇語調**
- **厭惡語調**

該模型適用於多種場景,例如客服情緒監控、社交媒體分析以及用戶反饋分類。

---

## 🚀 快速開始

### 安裝依賴
請確保安裝了 Hugging Face 的 Transformers 庫和 PyTorch:
```bash
pip install transformers torch
```

### 加載模型
使用以下代碼加載模型和分詞器,並進行情感分類:
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch

# 添加設備設定
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# 標籤映射字典
label_mapping = {
    0: "平淡語氣",
    1: "關切語調",
    2: "開心語調",
    3: "憤怒語調",
    4: "悲傷語調",
    5: "疑問語調",
    6: "驚奇語調",
    7: "厭惡語調"
}

def predict_emotion(text, model_path="./fine_tuned_model"):
    # 載入模型和分詞器
    tokenizer = AutoTokenizer.from_pretrained(model_path)
    model = AutoModelForSequenceClassification.from_pretrained(model_path).to(device)  # 移動模型到設備
    
    # 將文本轉換為模型輸入格式
    inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(device)  # 移動輸入到設備
    
    # 進行預測
    with torch.no_grad():
        outputs = model(**inputs)
    
    # 取得預測結果
    predicted_class = torch.argmax(outputs.logits).item()
    predicted_emotion = label_mapping[predicted_class]
    
    return predicted_emotion

if __name__ == "__main__":
    # 使用範例
    test_texts = [
        "雖然我努力了很久,但似乎總是做不到,我感到自己一無是處。",
        "你說的那些話真的讓我很困惑,完全不知道該怎麼反應。",
        "這世界真的是無情,為什麼每次都要給我這樣的考驗?",
        "有時候,我只希望能有一點安靜,不要再聽到這些無聊的話題。",
        "每次想起那段過去,我的心還是會痛,真的無法釋懷。",
        "我從來沒有想過會有這麼大的改變,現在我覺得自己完全失控了。",
        "我完全沒想到你會這麼做,這讓我驚訝到無法言喻。",
        "我知道我應該更堅強,但有些時候,這種情緒真的讓我快要崩潰了。"
    ]

    for text in test_texts:
        emotion = predict_emotion(text)
        print(f"文本: {text}")
        print(f"預測情緒: {emotion}\n")
```

---

### 數據集
- 微調數據集來自4000個標註的繁體中文情感數據集,覆蓋了多種情緒類別,確保模型在情感分類上的泛化能力。

## 🌟 聯繫與反饋
如果您在使用該模型時有任何問題,請聯繫:
- 郵箱:`fable8043@gmail.com`
- Hugging Face 項目頁面:[chinese-text-emotion-classifier](https://huggingface.co/Johnson8187/chinese-text-emotion-classifier)