File size: 20,685 Bytes
b46152e 4a940d2 b46152e 596af2c b46152e 4a940d2 b46152e 596af2c b46152e 4a940d2 b46152e 4a940d2 b46152e 4a940d2 b46152e 4a940d2 b46152e 4a940d2 b46152e 4a940d2 b46152e 4a940d2 b46152e 4a827c1 b46152e 4a827c1 b46152e 4a940d2 b46152e 4a940d2 b46152e 4a940d2 b46152e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 |
import torch
import torch.amp.autocast_mode
import os
import sys
import logging
import warnings
import argparse
from PIL import Image
from pathlib import Path
from tqdm import tqdm
from torch import nn
from transformers import AutoModel, AutoProcessor, AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast, AutoModelForCausalLM
from typing import List, Union
import torchvision.transforms.functional as TVF
from peft import PeftModel
import gc
import sys
IS_COLAB = 'google.colab' in sys.modules
# Constants
HF_TOKEN = os.environ.get("HF_TOKEN", None)
BASE_DIR = Path(__file__).resolve().parent # Define the base directory
CLIP_PATH = "google/siglip-so400m-patch14-384"
DEFAULT_MODEL_PATH = "unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit"
#DEFAULT_MODEL_PATH = "Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2" # Works better but full weight.
CHECKPOINT_PATH = BASE_DIR / Path("9em124t2-499968")
LORA_PATH = CHECKPOINT_PATH / "text_model"
CAPTION_TYPE_MAP = {
("descriptive", "formal", False, False): ["Write a descriptive caption for this image in a formal tone."],
("descriptive", "formal", False, True): ["Write a descriptive caption for this image in a formal tone within {word_count} words."],
("descriptive", "formal", True, False): ["Write a {length} descriptive caption for this image in a formal tone."],
("descriptive", "informal", False, False): ["Write a descriptive caption for this image in a casual tone."],
("descriptive", "informal", False, True): ["Write a descriptive caption for this image in a casual tone within {word_count} words."],
("descriptive", "informal", True, False): ["Write a {length} descriptive caption for this image in a casual tone."],
("training_prompt", "formal", False, False): ["Write a stable diffusion prompt for this image."],
("training_prompt", "formal", False, True): ["Write a stable diffusion prompt for this image within {word_count} words."],
("training_prompt", "formal", True, False): ["Write a {length} stable diffusion prompt for this image."],
("rng-tags", "formal", False, False): ["Write a list of Booru tags for this image."],
("rng-tags", "formal", False, True): ["Write a list of Booru tags for this image within {word_count} words."],
("rng-tags", "formal", True, False): ["Write a {length} list of Booru tags for this image."],
}
IMAGE_EXTENSIONS = ('.jpg', '.jpeg', '.png', '.bmp', '.webp')
# Global Variables
IS_NF4 = True
IS_LORA = True
MODEL_PATH = DEFAULT_MODEL_PATH
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Running on {device}")
warnings.filterwarnings("ignore", category=UserWarning)
logging.getLogger("transformers").setLevel(logging.ERROR)
class ImageAdapter(nn.Module):
def __init__(self, input_features: int, output_features: int, ln1: bool, pos_emb: bool, num_image_tokens: int, deep_extract: bool):
super().__init__()
self.deep_extract = deep_extract
if self.deep_extract:
input_features = input_features * 5
self.linear1 = nn.Linear(input_features, output_features)
self.activation = nn.GELU()
self.linear2 = nn.Linear(output_features, output_features)
self.ln1 = nn.Identity() if not ln1 else nn.LayerNorm(input_features)
self.pos_emb = None if not pos_emb else nn.Parameter(torch.zeros(num_image_tokens, input_features))
# Mode token
#self.mode_token = nn.Embedding(n_modes, output_features)
#self.mode_token.weight.data.normal_(mean=0.0, std=0.02) # Matches HF's implementation of llama3
# Other tokens (<|image_start|>, <|image_end|>, <|eot_id|>)
self.other_tokens = nn.Embedding(3, output_features)
self.other_tokens.weight.data.normal_(mean=0.0, std=0.02) # Matches HF's implementation of llama3
def forward(self, vision_outputs: torch.Tensor):
if self.deep_extract:
x = torch.concat((
vision_outputs[-2],
vision_outputs[3],
vision_outputs[7],
vision_outputs[13],
vision_outputs[20],
), dim=-1)
assert len(x.shape) == 3, f"Expected 3, got {len(x.shape)}" # batch, tokens, features
assert x.shape[-1] == vision_outputs[-2].shape[-1] * 5, f"Expected {vision_outputs[-2].shape[-1] * 5}, got {x.shape[-1]}"
else:
x = vision_outputs[-2]
x = self.ln1(x)
if self.pos_emb is not None:
assert x.shape[-2:] == self.pos_emb.shape, f"Expected {self.pos_emb.shape}, got {x.shape[-2:]}"
x = x + self.pos_emb
x = self.linear1(x)
x = self.activation(x)
x = self.linear2(x)
# Mode token
#mode_token = self.mode_token(mode)
#assert mode_token.shape == (x.shape[0], mode_token.shape[1], x.shape[2]), f"Expected {(x.shape[0], 1, x.shape[2])}, got {mode_token.shape}"
#x = torch.cat((x, mode_token), dim=1)
# <|image_start|>, IMAGE, <|image_end|>
other_tokens = self.other_tokens(torch.tensor([0, 1], device=self.other_tokens.weight.device).expand(x.shape[0], -1))
assert other_tokens.shape == (x.shape[0], 2, x.shape[2]), f"Expected {(x.shape[0], 2, x.shape[2])}, got {other_tokens.shape}"
x = torch.cat((other_tokens[:, 0:1], x, other_tokens[:, 1:2]), dim=1)
return x
def get_eot_embedding(self):
return self.other_tokens(torch.tensor([2], device=self.other_tokens.weight.device)).squeeze(0)
def load_models():
global MODEL_PATH, IS_NF4, IS_LORA
try:
if IS_NF4:
from transformers import BitsAndBytesConfig
nf4_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.bfloat16)
print("Loading in NF4")
print("Loading CLIP π")
clip_processor = AutoProcessor.from_pretrained(CLIP_PATH)
clip_model = AutoModel.from_pretrained(CLIP_PATH).vision_model
if (CHECKPOINT_PATH / "clip_model.pt").exists():
print("Loading VLM's custom vision model π")
checkpoint = torch.load(CHECKPOINT_PATH / "clip_model.pt", map_location='cpu', weights_only=False)
checkpoint = {k.replace("_orig_mod.module.", ""): v for k, v in checkpoint.items()}
clip_model.load_state_dict(checkpoint)
del checkpoint
clip_model.eval().requires_grad_(False).to(device)
print("Loading tokenizer πͺ")
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, use_fast=False)
assert isinstance(tokenizer, (PreTrainedTokenizer, PreTrainedTokenizerFast)), f"Tokenizer is of type {type(tokenizer)}"
print(f"Loading LLM: {MODEL_PATH} π€")
text_model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, quantization_config=nf4_config, device_map=device, torch_dtype=torch.bfloat16).eval()
if False and IS_LORA and LORA_PATH.exists(): # omitted
print("Loading VLM's custom text model π€")
text_model = PeftModel.from_pretrained(model=text_model, model_id=LORA_PATH, device_map=device, quantization_config=nf4_config)
text_model = text_model.merge_and_unload(safe_merge=True) # to avoid PEFT bug https://github.com/huggingface/transformers/issues/28515
else: print("VLM's custom text model isn't loaded π€")
print("Loading image adapter πΌοΈ")
image_adapter = ImageAdapter(clip_model.config.hidden_size, text_model.config.hidden_size, False, False, 38, False).eval().to("cpu")
image_adapter.load_state_dict(torch.load(CHECKPOINT_PATH / "image_adapter.pt", map_location="cpu", weights_only=False))
image_adapter.eval().to(device)
else:
print("Loading in bfloat16")
print("Loading CLIP π")
clip_processor = AutoProcessor.from_pretrained(CLIP_PATH)
clip_model = AutoModel.from_pretrained(CLIP_PATH).vision_model
if (CHECKPOINT_PATH / "clip_model.pt").exists():
print("Loading VLM's custom vision model π")
checkpoint = torch.load(CHECKPOINT_PATH / "clip_model.pt", map_location='cpu', weights_only=False)
checkpoint = {k.replace("_orig_mod.module.", ""): v for k, v in checkpoint.items()}
clip_model.load_state_dict(checkpoint)
del checkpoint
clip_model.eval().requires_grad_(False).to(device)
print("Loading tokenizer πͺ")
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, use_fast=False)
assert isinstance(tokenizer, (PreTrainedTokenizer, PreTrainedTokenizerFast)), f"Tokenizer is of type {type(tokenizer)}"
print(f"Loading LLM: {MODEL_PATH} π€")
text_model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, device_map="auto", torch_dtype=torch.bfloat16).eval() # device_map="auto" may cause LoRA issue
if IS_LORA and LORA_PATH.exists():
print("Loading VLM's custom text model π€")
text_model = PeftModel.from_pretrained(model=text_model, model_id=LORA_PATH, device_map=device)
text_model = text_model.merge_and_unload(safe_merge=True) # to avoid PEFT bug https://github.com/huggingface/transformers/issues/28515
else: print("VLM's custom text model isn't loaded π€")
print("Loading image adapter πΌοΈ")
image_adapter = ImageAdapter(clip_model.config.hidden_size, text_model.config.hidden_size, False, False, 38, False).eval().to("cpu")
image_adapter.load_state_dict(torch.load(CHECKPOINT_PATH / "image_adapter.pt", map_location="cpu", weights_only=False))
except Exception as e:
print(f"Error loading models: {e}")
sys.exit(1)
finally:
torch.cuda.empty_cache()
gc.collect()
return clip_processor, clip_model, tokenizer, text_model, image_adapter
@torch.inference_mode()
def stream_chat(input_images: List[Image.Image], caption_type: str, caption_tone: str, caption_length: Union[str, int],
max_new_tokens: int, top_p: float, temperature: float, batch_size: int, pbar: tqdm, models: tuple) -> List[str]:
global MODEL_PATH
clip_processor, clip_model, tokenizer, text_model, image_adapter = models
torch.cuda.empty_cache()
all_captions = []
# 'any' means no length specified
length = None if caption_length == "any" else caption_length
if isinstance(length, str):
try:
length = int(length)
except ValueError:
pass
# 'rng-tags' and 'training_prompt' don't have formal/informal tones
if caption_type == "rng-tags" or caption_type == "training_prompt":
caption_tone = "formal"
# Build prompt
prompt_key = (caption_type, caption_tone, isinstance(length, str), isinstance(length, int))
if prompt_key not in CAPTION_TYPE_MAP:
raise ValueError(f"Invalid caption type: {prompt_key}")
prompt_str = CAPTION_TYPE_MAP[prompt_key][0].format(length=length, word_count=length)
print(f"Prompt: {prompt_str}")
for i in range(0, len(input_images), batch_size):
batch = input_images[i:i+batch_size]
# Preprocess image
for input_image in input_images:
try:
image = input_image.resize((384, 384), Image.LANCZOS)
pixel_values = TVF.pil_to_tensor(image).unsqueeze(0) / 255.0
pixel_values = TVF.normalize(pixel_values, [0.5], [0.5])
pixel_values = pixel_values.to(device)
except ValueError as e:
print(f"Error processing image: {e}")
print("Skipping this image and continuing...")
continue
# Embed image
with torch.amp.autocast_mode.autocast(device, enabled=True):
vision_outputs = clip_model(pixel_values=pixel_values, output_hidden_states=True)
image_features = vision_outputs.hidden_states
embedded_images = image_adapter(image_features).to(device)
# Tokenize the prompt
prompt = tokenizer.encode(prompt_str, return_tensors='pt', padding=False, truncation=False, add_special_tokens=False)
# Embed prompt
prompt_embeds = text_model.model.embed_tokens(prompt.to(device))
assert prompt_embeds.shape == (1, prompt.shape[1], text_model.config.hidden_size), f"Prompt shape is {prompt_embeds.shape}, expected {(1, prompt.shape[1], text_model.config.hidden_size)}"
embedded_bos = text_model.model.embed_tokens(torch.tensor([[tokenizer.bos_token_id]], device=text_model.device, dtype=torch.int64))
eot_embed = image_adapter.get_eot_embedding().unsqueeze(0).to(dtype=text_model.dtype)
# Construct prompts
inputs_embeds = torch.cat([
embedded_bos.expand(embedded_images.shape[0], -1, -1),
embedded_images.to(dtype=embedded_bos.dtype),
prompt_embeds.expand(embedded_images.shape[0], -1, -1),
eot_embed.expand(embedded_images.shape[0], -1, -1),
], dim=1)
input_ids = torch.cat([
torch.tensor([[tokenizer.bos_token_id]], dtype=torch.long),
torch.zeros((1, embedded_images.shape[1]), dtype=torch.long),
prompt,
torch.tensor([[tokenizer.convert_tokens_to_ids("<|eot_id|>")]], dtype=torch.long),
], dim=1).to(device)
attention_mask = torch.ones_like(input_ids)
generate_ids = text_model.generate(input_ids=input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, do_sample=True,
suppress_tokens=None, max_new_tokens=max_new_tokens, top_p=top_p, temperature=temperature)
# Trim off the prompt
generate_ids = generate_ids[:, input_ids.shape[1]:]
if generate_ids[0][-1] == tokenizer.eos_token_id or generate_ids[0][-1] == tokenizer.convert_tokens_to_ids("<|eot_id|>"):
generate_ids = generate_ids[:, :-1]
caption = tokenizer.batch_decode(generate_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False)[0]
all_captions.append(caption.strip())
if pbar:
pbar.update(len(batch))
return all_captions
def process_directory(input_dir: Path, output_dir: Path, caption_type: str, caption_tone: str, caption_length: Union[str, int],
max_new_tokens: int, top_p: float, temperature: float, batch_size: int, models: tuple):
output_dir.mkdir(parents=True, exist_ok=True)
image_files = [f for f in input_dir.iterdir() if f.suffix.lower() in IMAGE_EXTENSIONS]
images_to_process = [f for f in image_files if not (output_dir / f"{f.stem}.txt").exists()]
if not images_to_process:
print("No new images to process.")
return
with tqdm(total=len(images_to_process), desc="Processing images", unit="image") as pbar:
for i in range(0, len(images_to_process), batch_size):
batch_files = images_to_process[i:i+batch_size]
batch_images = [Image.open(f).convert('RGB') for f in batch_files]
captions = stream_chat(batch_images, caption_type, caption_tone, caption_length,
max_new_tokens, top_p, temperature, batch_size, pbar, models)
for file, caption in zip(batch_files, captions):
with open(output_dir / f"{file.stem}.txt", 'w', encoding='utf-8') as f:
f.write(caption)
for img in batch_images:
img.close()
def parse_arguments():
parser = argparse.ArgumentParser(description="Process images and generate captions.")
parser.add_argument("input", nargs='+', help="Input image file or directory (or multiple directories)")
parser.add_argument("--output", help="Output directory (optional)")
parser.add_argument("--bs", type=int, default=4, help="Batch size (default: 4)")
parser.add_argument("--type", type=str, default="descriptive", choices=["descriptive", "training_prompt", "rng-tags"],
help='Caption Type (default: "descriptive")')
parser.add_argument("--tone", type=str, default="formal", choices=["formal", "informal"],
help='Caption Tone (default: "formal")')
parser.add_argument("--len", default="any",
choices=["any", "very short", "short", "medium-length", "long", "very long"] + [str(i) for i in range(20, 261, 10)],
help='Caption Length (default: "any")')
parser.add_argument("--model", type=str, default=DEFAULT_MODEL_PATH,
help='Huggingface LLM repo (default: "unsloth/Meta-Llama-3.1-8B-bnb-4bit")')
parser.add_argument("--bf16", action="store_true", default=False, help="Use bfloat16 (default: NF4)")
parser.add_argument("--nolora", action="store_true", default=False, help="Disable VLM's custom text model (default: Enable)")
parser.add_argument("--tokens", type=int, default=300, help="Max tokens (default: 300)")
parser.add_argument("--topp", type=float, default=0.9, help="Top-P (default: 0.9)")
parser.add_argument("--temp", type=float, default=0.6, help="Temperature (default: 0.6)")
return parser.parse_args()
def is_valid_repo(repo_id):
from huggingface_hub import HfApi
import re
try:
if not re.fullmatch(r'^[^/,\s\"\']+/[^/,\s\"\']+$', repo_id): return False
api = HfApi()
if api.repo_exists(repo_id=repo_id): return True
else: return False
except Exception as e:
print(f"Failed to connect {repo_id}. {e}")
return False
def main():
global MODEL_PATH, IS_NF4, IS_LORA
args = parse_arguments()
input_paths = [Path(input_path) for input_path in args.input]
batch_size = args.bs
caption_type = args.type
caption_tone = args.tone
caption_length = args.len
max_new_tokens = args.tokens
top_p = args.topp
temperature = args.temp
IS_NF4 = False if args.bf16 else True
IS_LORA = False if args.nolora else True
if is_valid_repo(args.model): MODEL_PATH = args.model
else: sys.exit(1)
models = load_models()
for input_path in input_paths:
if input_path.is_file() and input_path.suffix.lower() in IMAGE_EXTENSIONS:
output_path = input_path.with_suffix('.txt')
print(f"Processing single image ποΈ: {input_path.name}")
with tqdm(total=1, desc="Processing image", unit="image") as pbar:
captions = stream_chat([Image.open(input_path).convert('RGB')], caption_type, caption_tone, caption_length,
max_new_tokens, top_p, temperature, 1, pbar, models)
with open(output_path, 'w', encoding='utf-8') as f:
f.write(captions[0])
print(f"Output saved to {output_path}")
elif input_path.is_dir():
output_path = Path(args.output) if args.output else input_path
print(f"Processing directory π: {input_path}")
print(f"Output directory π¦: {output_path}")
print(f"Batch size ποΈ: {batch_size}")
process_directory(input_path, output_path, caption_type, caption_tone, caption_length,
max_new_tokens, top_p, temperature, batch_size, models)
else:
print(f"Invalid input: {input_path}")
print("Skipping...")
if not input_paths:
print("Usage:")
print("For single image: python app.py [image_file] [--bs batch_size]")
print("For directory (same input/output): python app.py [directory] [--bs batch_size]")
print("For directory (separate input/output): python app.py [directory] --output [output_directory] [--bs batch_size]")
print("For multiple directories: python app.py [directory1] [directory2] ... [--output output_directory] [--bs batch_size]")
sys.exit(1)
if __name__ == "__main__":
main() |