File size: 13,688 Bytes
30241e2
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b90846ec4c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b90846ec550>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b90846ec5e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b90846ec670>", "_build": "<function ActorCriticPolicy._build at 0x7b90846ec700>", "forward": "<function ActorCriticPolicy.forward at 0x7b90846ec790>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b90846ec820>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b90846ec8b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7b90846ec940>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b90846ec9d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b90846eca60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b90846ecaf0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b908487fa00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 500736, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1719078420477679435, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAOB9Ir6/nBc/Fd2DPRPmk740N8w8w+mNPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0014719999999999178, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG63t6PbO/uMAWyUTVQBjAF0lEdAilkRe1KGtnV9lChoBkdAOwCP2f02+GgHTUQBaAhHQIpcmDtgKF91fZQoaAZHQGzhC7sfJV9oB02gA2gIR0CKaWuX/o7ndX2UKGgGR0BuE/ZCfHxSaAdNSwFoCEdAim0JljEvTXV9lChoBkfANjawIMSbpmgHTRcBaAhHQIpwRnOB19x1fZQoaAZHQGzkAxrSE15oB01/AWgIR0CKdufvnbItdX2UKGgGR8AX/6ab4Ju3aAdL82gIR0CKeZyo4uK5dX2UKGgGR0BqClDMNc4YaAdNigFoCEdAin4TBInSfHV9lChoBkdAYDjoduHerWgHTegDaAhHQIqL7gjyFwl1fZQoaAZHQGmHy13MY/FoB01wAWgIR0CKklAD7qIKdX2UKGgGR0Bv1B9RaX8gaAdNWwFoCEdAipZAElme2HV9lChoBkdAXfVRpDeCTWgHTegDaAhHQIqmG5tm+TN1fZQoaAZHQGzLG4Ajps5oB02JAWgIR0CKrE4tHxz8dX2UKGgGR0Btzf/io86naAdNrAFoCEdAirU+RYA80XV9lChoBkdAGDB06o2n9GgHTQ0BaAhHQIq4Zb8m8dx1fZQoaAZHQFfLdnCfpUxoB03oA2gIR0CKxiC04R29dX2UKGgGR0Bqj9AkcCHRaAdNbwFoCEdAispX9itq6HV9lChoBkdAaawcf/3nIWgHTZMBaAhHQIrRVZX+2mZ1fZQoaAZHwCeQCbMHKOloB002AWgIR0CK1MGh24d7dX2UKGgGR0BpQ6yjYZl4aAdN7AJoCEdAit+kIX0oSnV9lChoBkdAaxtsANoak2gHTZoBaAhHQIrkSKziS7p1fZQoaAZHQGjMWnsLORloB01ZAmgIR0CK7VG3nZCfdX2UKGgGR0Bsh4HHFPznaAdNCQJoCEdAivM6nzg/DHV9lChoBkdAb61TjNpudmgHTZcBaAhHQIr6FEd/8VJ1fZQoaAZHQG0bkG7jDKpoB02lAWgIR0CK/rWZqmCRdX2UKGgGR0BsDtC/oJRgaAdNigFoCEdAiwZeEqUeMnV9lChoBkdAVcYNnXd0rGgHTegDaAhHQIsZNCXyAhB1fZQoaAZHwDfQH5aePJdoB00kAWgIR0CLHIikfs/qdX2UKGgGR0BoQCjnFHawaAdN4wFoCEdAiyIMRxtHhHV9lChoBkdAbNhZOi35OGgHTZ4BaAhHQIspAmG/N7l1fZQoaAZHQG58qpDNQj5oB03LAWgIR0CLLi7K7qY7dX2UKGgGR0BrJwvalDWtaAdNDgJoCEdAizZ3+VC5VnV9lChoBkdAU2Ajps41g2gHTegDaAhHQItENzU7SzB1fZQoaAZHQG7s402tMf1oB02NAWgIR0CLSIxX4j8ldX2UKGgGR0BvAWtjkMkQaAdNqgFoCEdAi01Lv1DjR3V9lChoBkdAa9pSR8twrGgHTakBaAhHQItUWmLtNSJ1fZQoaAZHQFRI71Iy0rtoB03oA2gIR0CLYc6vJRwZdX2UKGgGR0BnSPWtlqagaAdNEQNoCEdAi26BLwnYx3V9lChoBkdAbAgp9ZzPr2gHTb8BaAhHQIt1ZTXJ5mh1fZQoaAZHQGqCoTfzjFRoB00LAmgIR0CLgJp9qk/KdX2UKGgGR0BpwLl1bJOnaAdNswFoCEdAi4VylN1yNnV9lChoBkfAObBdyDIzWWgHTXsBaAhHQIuJzn7pFCt1fZQoaAZHQG/FBePaL4xoB02dAWgIR0CLkNSS/0uldX2UKGgGR0BuSrMcIZ62aAdNiAFoCEdAi5UvlU6xPnV9lChoBkdAakKotL+PzWgHTcEBaAhHQIuclqN6w+t1fZQoaAZHQDRpXo1UEPloB01SAWgIR0CLoFvttyggdX2UKGgGR0BvVe7e2uxKaAdNeQFoCEdAi6SSgf2bonV9lChoBkdAa1rw++ueSWgHTYIBaAhHQIurO4wyqMp1fZQoaAZHQHA/X5WRzRxoB03xAWgIR0CLsNknTiKjdX2UKGgGR0Bo7ymZVn27aAdNnAFoCEdAi7ffL9uP3nV9lChoBkdAbDAnyd4FA2gHTeQBaAhHQIu9PMUypJh1fZQoaAZHQGnTSzgMtshoB026AWgIR0CLwjAlfJFLdX2UKGgGR0BZ+7VJ+UhWaAdN6ANoCEdAi9AB6KLsKXV9lChoBkfARDlWhh6SkmgHTWMBaAhHQIvYFT5wfhd1fZQoaAZHQF/VXUH6dlNoB03oA2gIR0CL6VstTUAldX2UKGgGR0BvdZxvNu+AaAdNoAFoCEdAi+3oF3Y+S3V9lChoBkfAUb7LyMDOkmgHTZMBaAhHQIv0z0SRKYl1fZQoaAZHQGrC5uhsZYRoB02KAWgIR0CL+Su5jH4odX2UKGgGR0BvGKqfe1rqaAdNrAFoCEdAi/3fSH/LknV9lChoBkdAbxDACW/rSmgHTccBaAhHQIwFYX40uUV1fZQoaAZHQEAo6ZH/cWVoB00UAWgIR0CMCG71ZkkKdX2UKGgGR8BFUGu1WsBAaAdNYAFoCEdAjAxZHd43WHV9lChoBkdAbrH5/LDAJ2gHTW4BaAhHQIwS0CkoF3Z1fZQoaAZHQGgyVNYbKihoB02NAWgIR0CMFzYkmhM8dX2UKGgGR0BqxNIwudwvaAdNiAFoCEdAjB3zTF2mpHV9lChoBkdAcP1vStvGZWgHTXoBaAhHQIwiRV0cOsl1fZQoaAZHQGmgv3BYV7BoB02sAWgIR0CMJx0NBnjAdX2UKGgGR0BoXZvaURnOaAdNqwFoCEdAjC4oWpIcznV9lChoBkdAbXtIZqEeyWgHTcsBaAhHQIwzQfuCwr11fZQoaAZHQExOkX1rZapoB03oA2gIR0CMRYqIacZtdX2UKGgGR0BrEJaPjn3daAdN2gFoCEdAjE51/MGHHnV9lChoBkdAaSB0Cih37mgHTcEBaAhHQIxTcVUMoc91fZQoaAZHQHAd717IDHRoB02DAWgIR0CMV9JeVs1sdX2UKGgGR0BsGg+IMz/IaAdNhQFoCEdAjF59Oh0yQHV9lChoBkfASr+T1TR6W2gHTUMBaAhHQIxiEIw/PgN1fZQoaAZHwEH67aqS5iFoB009AWgIR0CMZaTrVvuPdX2UKGgGR0Bs5geDFqBVaAdNmwFoCEdAjGyNapxWDHV9lChoBkdAb5dSUkfLcWgHTYoBaAhHQIxxEoMKCxx1fZQoaAZHwEfwpH7P6bhoB0v5aAhHQIxz1mvnr6d1fZQoaAZHQG1+vaURnOBoB01vAWgIR0CMei1pj+aSdX2UKGgGR0BwkKakRBeHaAdNDgJoCEdAjIAT41xbS3V9lChoBkfAMjc7hegL7WgHTTcBaAhHQIyF1TUAks11fZQoaAZHQFofnYQJ5VxoB03oA2gIR0CMk3iVB2OidX2UKGgGR0BwWt8KG+K1aAdN1QFoCEdAjJiz7di2D3V9lChoBkdAag728qWkamgHTX0BaAhHQIyeBoZhrnF1fZQoaAZHQG0dFsYVIqdoB01sAWgIR0CMpn2Bas6rdX2UKGgGR0Bez38n/kvLaAdN6ANoCEdAjLbYVqN6xHV9lChoBkdAcHdK9f1Hv2gHTZQBaAhHQIy7SL/CIk91fZQoaAZHwCee2w3YL9doB005AWgIR0CMvtywwCbMdX2UKGgGR0Bs456Ww/xEaAdNYAFoCEdAjMUDG1hLG3V9lChoBkdAcIKtrKvFFWgHTVEBaAhHQIzIu8IzFdd1fZQoaAZHQGsSyzPa+N9oB011AWgIR0CMzyBKcurZdX2UKGgGR0BqxNCJGe+VaAdNWgFoCEdAjNL3rt3OfXV9lChoBkdAb9txmTTvzGgHTTQBaAhHQIzWUtVaOgh1fZQoaAZHQHIrmf9P1thoB02qAWgIR0CM3VXqZ+hHdX2UKGgGR0BqSld5Y5ktaAdNdAFoCEdAjOF3c580DXV9lChoBkdAbnk2VmjCYWgHTZEBaAhHQIzmBNbkfcN1fZQoaAZHQGwAFPznRsxoB01dAWgIR0CM7B+qioKldX2UKGgGR0BwOVxR2r4naAdNLQFoCEdAjO9t7jT8YXV9lChoBkdAb3xssxwhn2gHTWsBaAhHQIzzjGPxQSB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1956, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVOwMAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoMowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoPYoRvtu0k7tN+nK5iR/e03aIpwCMA2luY5SKEd8al6HkmwQGbiNofyZ1w9gAdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUSwB1YnViLg==", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": "Generator(PCG64)"}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVpQEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooRct+zReHPGJPDkDtduj427ACMA2luY5SKEU+HDH4yKpz156ZM7o/uoIIAdYwKaGFzX3VpbnQzMpRLAYwIdWludGVnZXKUigVjK97lAHVidWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}