File size: 7,690 Bytes
5359669 6f7cca9 5359669 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
import os
from os import listdir
from os.path import isfile
import torch
import numpy as np
import torchvision
import torch.utils.data
import re
import random
import pandas as pd
import matplotlib.pyplot as plt
import tqdm
import torch.nn.functional as F
import numpy as np
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from datetime import datetime
import torch.nn as nn
from torch import optim
import h5py
class EMAHelper(object):
def __init__(self, mu=0.999):
self.mu = mu
self.shadow = {}
def register(self, module):
if isinstance(module, nn.DataParallel):
module = module.module
for name, param in module.named_parameters():
if param.requires_grad:
self.shadow[name] = param.data.clone()
def update(self, module):
if isinstance(module, nn.DataParallel):
module = module.module
for name, param in module.named_parameters():
if param.requires_grad:
self.shadow[name].data = (1. - self.mu) * param.data + self.mu * self.shadow[name].data
def ema(self, module):
if isinstance(module, nn.DataParallel):
module = module.module
for name, param in module.named_parameters():
if param.requires_grad:
param.data.copy_(self.shadow[name].data)
def ema_copy(self, module):
if isinstance(module, nn.DataParallel):
inner_module = module.module
module_copy = type(inner_module)(inner_module.config).to(inner_module.config.device)
module_copy.load_state_dict(inner_module.state_dict())
module_copy = nn.DataParallel(module_copy)
else:
module_copy = type(module)(module.config).to(module.config.device)
module_copy.load_state_dict(module.state_dict())
self.ema(module_copy)
return module_copy
def state_dict(self):
return self.shadow
def load_state_dict(self, state_dict):
self.shadow = state_dict
class spec:
def __init__(self, data_dir,batch_size,num_workers):
self.data_dir = data_dir
self.batch_size = batch_size
self.num_workers = num_workers
self.transforms = torchvision.transforms.Compose([torchvision.transforms.ToTensor()])
def get_loaders(self):
print("=> Loader the spectra dataset...")
train_dataset = specDataset(dir=os.path.join(self.data_dir, '../0_40PbPb502train'), transforms = self.transforms)
val_dataset = specDataset(dir=os.path.join(self.data_dir, '../0_40PbPb502val'), transforms=self.transforms)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size = self.batch_size, shuffle = True, num_workers = self.num_workers, pin_memory = True)
val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=self.batch_size, shuffle=True, num_workers=self.num_workers, pin_memory=True)
return train_loader , val_loader
class specDataset(torch.utils.data.Dataset):
def __init__(self, dir, transforms):
super().__init__()
self.dir = dir
spec_dir = dir
input_names = []
#training file list
inputs = os.path.join(spec_dir)
profiles = [f for f in listdir(inputs) if isfile(os.path.join(inputs, f))]
input_names += [os.path.join(inputs, i) for i in profiles]
#this is a list of filenames
x = list(enumerate(input_names))
random.shuffle(x)
indices, input_names = zip(*x)
self.input_names = input_names
self.transforms = transforms
def get_profiles(self, index):
input_name = self.input_names[index]
#read h5 file
dataset = h5py.File(input_name, 'r')
IC = dataset['IC'][:]
chSpec = dataset['chSpec'][:]
shear = int(input_name[-4])
IC = IC[18:82,18:82]
return self.transforms(IC).view(1,64,64), self.transforms(chSpec).view(1,64,64), shear
def __getitem__(self, index):
res = self.get_profiles(index)
return res
def __len__(self):
return len(self.input_names)
data_dir = './'
batch_size = 32
num_workers = 4
DATASET = spec(data_dir, batch_size, num_workers)
train_loader, valloader = DATASET.get_loaders()
print(len(train_loader))
print(len(valloader))
from diffusion_cond import *
from Diff_unet_attn import *
def init_weights(m):
if isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d):
nn.init.xavier_uniform_(m.weight)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def validate(model, valloader, diffusion, device):
model.eval()
#ema_model.eval()
val_loss = 0
mse = nn.MSELoss()
with torch.no_grad():
for i, (condition,Spec,shear) in enumerate(valloader):
condition = condition.to(device).to(torch.float32)
Spec = Spec.to(device).to(torch.float32)
shear = shear.to(device)
t = diffusion.sample_timesteps(Spec.shape[0]).to(device)
Spec_t, noise = diffusion.noise_images(Spec, t)
predicted_noise = model(torch.cat([condition, Spec_t], dim=1), t,shear)
loss = mse(predicted_noise,noise)
val_loss += loss.item()
val_loss /= len(valloader)
return val_loss
epochs = 10000
def train(epochs):
device = torch.device("cuda" if torch.cuda.is_available else "cpu")
model = DiffusionUNet(ch = 128, num_res_blocks=2, image_size = 64, drop_out = 0).to(device)
if torch.cuda.device_count() > 1:
print(torch.cuda.device_count())
model = nn.DataParallel(model)
model.apply(init_weights)
ema_helper = EMAHelper()
ema_helper.register(model)
optimizer = optim.AdamW(model.parameters(), lr=0.0001)
#optimizer = optim.Adam(model.parameters(), lr=0.0005, weight_decay=0.0,betas=(0.9, 0.999), amsgrad=False, eps=0.00000001)
#scheduler = optim.lr_scheduler.CyclicLR(optimizer, base_lr=0.00001, max_lr=0.001, step_size_up=2000, mode='triangular2')
mse = nn.MSELoss()
diffusion = Diffusion(img_size = 64, device=device)
l = len(train_loader)
best_loss = float("inf")
for epoch in range(epochs):
epoch_loss=0
for i, (condition, Spec, shear) in enumerate(train_loader):
condition = condition.to(device).to(torch.float32)
Spec = Spec.to(device).to(torch.float32)
shear = shear.to(device)
t = diffusion.sample_timesteps(Spec.shape[0]).to(device)
Spec_t, noise = diffusion.noise_images(Spec, t)
predicted_noise = model(torch.cat([condition, Spec_t], dim=1), t,shear)
loss = mse(predicted_noise,noise)
optimizer.zero_grad()
loss.backward()
optimizer.step()
ema_helper.update(model)
epoch_loss = epoch_loss+loss.item()/l
val_loss=validate(model, valloader, diffusion, device)
current_time = datetime.now()
print(current_time,f"Epoch [{epoch+1}/{epochs}], Train Loss: {epoch_loss:.4f}, Val Loss: {val_loss:.4f}")
if best_loss > val_loss:
best_loss = val_loss
torch.save(model.state_dict(), 'model.pth')
torch.save(ema_helper.state_dict(), 'ema_model.pth')
current_time = datetime.now()
print(current_time,'model is saved. The loss is ',val_loss)
train(epochs=10000)
|