File size: 4,368 Bytes
5359669
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2747718
5359669
 
 
 
 
 
 
 
 
2747718
5359669
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33b4d08
 
 
5359669
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2747718
5359669
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import os
from os import listdir
from os.path import isfile
import torch
import numpy as np
import torchvision
import torch.utils.data
import re
import random
import pandas as pd
import matplotlib.pyplot as plt
import tqdm
import torch.nn.functional as F
import numpy as np
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from datetime import datetime
import torch.nn as nn
from torch import optim
import h5py
from datetime import datetime


class spec:
    def __init__(self, data_dir,batch_size,num_workers):
        self.data_dir = data_dir
        self.batch_size = batch_size
        self.num_workers = num_workers
        self.transforms = torchvision.transforms.Compose([torchvision.transforms.ToTensor()])

    def get_loaders(self):
        print("=> Loader the spectra dataset...")
        train_dataset = specDataset(dir=os.path.join(self.data_dir, './dataset'), transforms = self.transforms)
        #val_dataset = specDataset(dir=os.path.join(self.data_dir, 'val_data'), transforms=self.transforms)

        
        train_loader = torch.utils.data.DataLoader(train_dataset, batch_size = self.batch_size, shuffle = True, num_workers = self.num_workers, pin_memory = True)
        #val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=self.batch_size, shuffle=False, num_workers=self.num_workers, pin_memory=True)

        return train_loader #, val_loader


class specDataset(torch.utils.data.Dataset):
    def __init__(self, dir, transforms):
        super().__init__()
        self.dir = dir
        spec_dir = dir
        input_names = []

 #       #training file list
        inputs = os.path.join(spec_dir)
        profiles = [f for f in listdir(inputs) if isfile(os.path.join(inputs, f))]
        
            
        input_names += [os.path.join(inputs, i) for i in profiles]
        #this is a list of filenames
        x = list(enumerate(input_names))
        random.shuffle(x)
        indices, input_names = zip(*x)
        
        self.input_names = input_names
        self.transforms = transforms

    def get_profiles(self, index):
        input_name = self.input_names[index]
        
        #read h5 file
        dataset = h5py.File(input_name, 'r')
        IC = dataset['IC'][:]
        chSpec = dataset['chSpec'][:]
        
        shear = int(input_name[-4])
        #IC = IC[18:82,18:82]

        return self.transforms(IC).view(1,100,100), self.transforms(chSpec).view(1,64,64), shear, input_name
        
    def __getitem__(self, index):
        res = self.get_profiles(index)
        return res

    def __len__(self):
        return len(self.input_names)


data_dir = './'
batch_size = 32
num_workers = 4

DATASET = spec(data_dir, batch_size, num_workers)
train_loader = DATASET.get_loaders()
print(train_loader)

from diffusion_cond import *
from Diff_unet_attn import *

device = torch.device("cuda:0" if torch.cuda.is_available else "cpu")

model = DiffusionUNet(ch = 128, num_res_blocks=2, image_size = 64, drop_out = 0).to(device)
diffusion = Diffusion(img_size = 64, device=device)


model.load_state_dict(torch.load('pretrained_weight.pth'))

print(len(train_loader))
for i, (condition, Spec, shear, file_name) in enumerate(train_loader):
    condition = condition.to(device).to(torch.float32)
    Spec = Spec.to(device).to(torch.float32)
    shear = shear.to(device)
    sample_times = 1
    t = diffusion.sample_timesteps(Spec.shape[0]).to(device)
    x = torch.zeros(Spec.size(0),sample_times,64,64).to(device)
    for ix in range(sample_times):
        x[:,ix,:,:]=diffusion.sample(model, condition[:,:,18:82,18:82], Spec, shear).squeeze(1)
    
    num = x.size(0)
    for j in range(num):
        
        file = file_name[j]
        file = os.path.basename(file)
        #print(file)
        file='shear1_ddim1_'+file
        print(file)
        temp_truth = Spec[j].view(64,64).cpu().numpy()
        temp_genera = x[j].view(sample_times,64,64).cpu().numpy()
        temp_condition = condition[j].view(100,100).cpu().numpy()
        with h5py.File('./test_res/'+file, 'w') as h5f:
            h5f.create_dataset('truth', data=temp_truth)
            for ix in range(sample_times):
                h5f.create_dataset('genera_{}'.format(ix), data=temp_genera[ix,:,:].reshape((64,64)))
            h5f.create_dataset('IC', data=temp_condition)