File size: 3,480 Bytes
a250628 887819e a250628 887819e a250628 430a455 592407b a250628 887819e a250628 430a455 592407b a250628 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
---
library_name: transformers
license: apache-2.0
base_model: google/mt5-base
tags:
- summarization
- generated_from_trainer
metrics:
- rouge
model-index:
- name: mt5-finetuned-summarize
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mt5-finetuned-summarize
This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: nan
- Rouge1: 0.0
- Rouge2: 0.0
- Rougel: 0.0
- Rougelsum: 0.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-------:|:----:|:---------------:|:------:|:------:|:------:|:---------:|
| 0.0 | 0.9875 | 79 | nan | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 1.975 | 158 | nan | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 2.9625 | 237 | nan | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 3.95 | 316 | nan | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 4.9375 | 395 | nan | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 5.925 | 474 | nan | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 6.9125 | 553 | nan | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 7.9 | 632 | nan | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 8.8875 | 711 | nan | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 9.875 | 790 | nan | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 10.8625 | 869 | nan | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 11.85 | 948 | nan | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 12.8375 | 1027 | nan | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 13.825 | 1106 | nan | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 14.8125 | 1185 | nan | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 15.8 | 1264 | nan | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 16.7875 | 1343 | nan | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 17.775 | 1422 | nan | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 18.7625 | 1501 | nan | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 19.75 | 1580 | nan | 0.0 | 0.0 | 0.0 | 0.0 |
### Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
|