File size: 8,855 Bytes
ade1685 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 1/10\n",
"\u001b[1m7964/7964\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m383s\u001b[0m 48ms/step - accuracy: 0.7637 - loss: 0.4815 - val_accuracy: 0.8195 - val_loss: 0.3929 - learning_rate: 0.0010\n",
"Epoch 2/10\n",
"\u001b[1m7964/7964\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m360s\u001b[0m 45ms/step - accuracy: 0.8561 - loss: 0.3267 - val_accuracy: 0.8256 - val_loss: 0.3854 - learning_rate: 0.0010\n",
"Epoch 3/10\n",
"\u001b[1m7964/7964\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m373s\u001b[0m 47ms/step - accuracy: 0.8937 - loss: 0.2503 - val_accuracy: 0.8250 - val_loss: 0.4444 - learning_rate: 0.0010\n",
"Epoch 4/10\n",
"\u001b[1m7964/7964\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m377s\u001b[0m 47ms/step - accuracy: 0.9269 - loss: 0.1794 - val_accuracy: 0.8173 - val_loss: 0.4580 - learning_rate: 0.0010\n",
"Epoch 5/10\n",
"\u001b[1m7964/7964\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m385s\u001b[0m 48ms/step - accuracy: 0.9496 - loss: 0.1284 - val_accuracy: 0.8147 - val_loss: 0.5704 - learning_rate: 0.0010\n",
"\u001b[1m2213/2213\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m20s\u001b[0m 9ms/step - accuracy: 0.8228 - loss: 0.3848\n",
"Test Accuracy: 0.8214734792709351\n",
"\u001b[1m2213/2213\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m24s\u001b[0m 11ms/step\n",
"\n",
"Classification Report:\n",
" precision recall f1-score support\n",
"\n",
" 0 0.84 0.90 0.87 46733\n",
" 1 0.77 0.68 0.72 24052\n",
"\n",
" accuracy 0.82 70785\n",
" macro avg 0.81 0.79 0.79 70785\n",
"weighted avg 0.82 0.82 0.82 70785\n",
"\n",
"\n",
"Confusion Matrix:\n",
"[[41892 4841]\n",
" [ 7796 16256]]\n"
]
}
],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"from tensorflow.keras.preprocessing.text import Tokenizer\n",
"from tensorflow.keras.preprocessing.sequence import pad_sequences\n",
"from tensorflow.keras.models import Sequential\n",
"from tensorflow.keras.layers import Embedding, LSTM, Dense, Dropout\n",
"from tensorflow.keras.utils import to_categorical\n",
"from sklearn.model_selection import train_test_split\n",
"from sklearn.preprocessing import LabelEncoder\n",
"from sklearn.metrics import classification_report, confusion_matrix\n",
"from tensorflow.keras.callbacks import ReduceLROnPlateau, TensorBoard, EarlyStopping\n",
"\n",
"# load data\n",
"df = pd.read_csv('combined_data.csv')\n",
"\n",
"# Tokenize the text\n",
"tokenizer = Tokenizer()\n",
"tokenizer.fit_on_texts(df['title'])\n",
"X = tokenizer.texts_to_sequences(df['title'])\n",
"X = pad_sequences(X)\n",
"\n",
"# Encode the target variable\n",
"encoder = LabelEncoder()\n",
"y = encoder.fit_transform(df['source'])\n",
"y = to_categorical(y)\n",
"\n",
"# Split the data\n",
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n",
"\n",
"# Build the LSTM model\n",
"model = Sequential()\n",
"model.add(Embedding(len(tokenizer.word_index) + 1, 128))\n",
"model.add(LSTM(128, return_sequences=True))\n",
"model.add(Dropout(0.5))\n",
"model.add(LSTM(64))\n",
"model.add(Dropout(0.5))\n",
"model.add(Dense(len(encoder.classes_), activation='softmax'))\n",
"model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])\n",
"\n",
"# Learning rate scheduler\n",
"lr_scheduler = ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=3, min_lr=1e-5)\n",
"\n",
"# TensorBoard callback for logging\n",
"tensorboard_callback = TensorBoard(log_dir='./logs', histogram_freq=1)\n",
"\n",
"# Early stopping to prevent overfitting\n",
"early_stopping = EarlyStopping(monitor='val_loss', patience=3, restore_best_weights=True)\n",
"\n",
"# Train the model with callbacks\n",
"model.fit(X_train, y_train, epochs=10, batch_size=32, validation_split=0.1, \n",
" callbacks=[lr_scheduler, tensorboard_callback, early_stopping])\n",
"\n",
"# Evaluate the model\n",
"loss, accuracy = model.evaluate(X_test, y_test)\n",
"print(f\"Test Accuracy: {accuracy}\")\n",
"\n",
"# Predictions and evaluation\n",
"y_pred = model.predict(X_test)\n",
"y_pred_classes = y_pred.argmax(axis=1)\n",
"y_test_classes = y_test.argmax(axis=1)\n",
"\n",
"print(\"\\nClassification Report:\")\n",
"print(classification_report(y_test_classes, y_pred_classes))\n",
"\n",
"print(\"\\nConfusion Matrix:\")\n",
"print(confusion_matrix(y_test_classes, y_pred_classes))\n"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n"
]
}
],
"source": [
"# save model\n",
"model.save('news_classifier.h5')\n",
"\n",
"# save tokenizer\n",
"import pickle\n",
"with open('tokenizer.pickle', 'wb') as handle:\n",
" pickle.dump(tokenizer, handle, protocol=pickle.HIGHEST_PROTOCOL)\n",
" \n",
"# save encoder\n",
"with open('encoder.pickle', 'wb') as handle:\n",
" pickle.dump(encoder, handle, protocol=pickle.HIGHEST_PROTOCOL)\n"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"# deploy the model\n",
"# user give the title and the model will predict the source\n",
"# Load the model and tokenizer\n",
"from tensorflow.keras.models import load_model\n",
"import pickle\n",
"\n",
"# Load the tokenizer\n",
"with open('tokenizer.pickle', 'rb') as handle:\n",
" tokenizer = pickle.load(handle)\n",
"\n",
"# Load the encoder\n",
"with open('encoder.pickle', 'rb') as handle:\n",
" encoder = pickle.load(handle)\n",
"\n",
"\n",
"def predict_source(title):\n",
" # Load the model\n",
" model = load_model('news_classifier.h5')\n",
" # Tokenize the input\n",
" X = tokenizer.texts_to_sequences([title])\n",
" X = pad_sequences(X)\n",
" # Predict the source\n",
" y_pred = model.predict(X)\n",
" source = encoder.inverse_transform(y_pred.argmax(axis=1))\n",
" return source[0]"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"WARNING:absl:Compiled the loaded model, but the compiled metrics have yet to be built. `model.compile_metrics` will be empty until you train or evaluate the model.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 109ms/step\n",
"Predicted Source: foxnews\n"
]
}
],
"source": [
"# Test the function\n",
"# user input\n",
"title = input(\"Enter the title: \")\n",
"source = predict_source(title)\n",
"print(f\"Predicted Source: {source}\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "base",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|