File size: 2,194 Bytes
d2a864d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
license: cc-by-nc-4.0
base_model: facebook/nllb-200-distilled-600M
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: nllb-200-distilled-600M-finetuned_augmented_synthetic_cleaned_ar-to-en
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# nllb-200-distilled-600M-finetuned_augmented_synthetic_cleaned_ar-to-en
This model is a fine-tuned version of [facebook/nllb-200-distilled-600M](https://huggingface.co/facebook/nllb-200-distilled-600M) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7548
- Bleu: 55.0936
- Gen Len: 71.309
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|
| 1.0702 | 1.0 | 2085 | 0.9530 | 45.7652 | 72.802 |
| 0.8945 | 2.0 | 4170 | 0.8525 | 51.7618 | 70.845 |
| 0.8323 | 3.0 | 6255 | 0.8107 | 52.8262 | 71.099 |
| 0.7552 | 4.0 | 8340 | 0.7867 | 54.4572 | 71.243 |
| 0.7133 | 5.0 | 10425 | 0.7717 | 55.0749 | 71.354 |
| 0.6844 | 6.0 | 12510 | 0.7648 | 55.5344 | 71.477 |
| 0.6439 | 7.0 | 14595 | 0.7595 | 55.6968 | 70.883 |
| 0.6338 | 8.0 | 16680 | 0.7546 | 54.7998 | 71.414 |
| 0.6098 | 9.0 | 18765 | 0.7544 | 54.7933 | 71.567 |
| 0.6066 | 10.0 | 20850 | 0.7548 | 55.0936 | 71.309 |
### Framework versions
- Transformers 4.33.0
- Pytorch 1.13.1
- Datasets 2.14.4
- Tokenizers 0.13.3
|