CodeLlama-7B-Kexer / README.md
jdev8's picture
Update README.md
422a12d verified
|
raw
history blame
2.29 kB
metadata
license: apache-2.0

Kexer models

Kexer models is a collection of fine-tuned open-source generative text models fine-tuned on Kotlin Exercices dataset. This is a repository for fine-tuned CodeLlama-7b model in the Hugging Face Transformers format.

Model use

  from transformers import AutoModelForCausalLM, AutoTokenizer

  # Load pre-trained model and tokenizer
  model_name = 'JetBrains/CodeLlama-7B-Kexer'  # Replace with the desired model name
  tokenizer = AutoTokenizer.from_pretrained(model_name)
  model = AutoModelForCausalLM.from_pretrained(model_name).cuda()

  # Encode input text
  input_text = """This function takes an integer n and returns factorial of a number:
  fun factorial(n: Int): Int {"""
  input_ids = tokenizer.encode(input_text, return_tensors='pt').to('cuda')

  # Generate text
  output = model.generate(input_ids, max_length=150, num_return_sequences=1, no_repeat_ngram_size=2, early_stopping=True)

  # Decode and print the generated text
  generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
  print(generated_text)

Training setup

The model was trained on one A100 GPU with following hyperparameters:

Hyperparameter Value
warmup 10%
max_lr 1e-4
scheduler linear
total_batch_size 256 (~130K tokens per step)

Fine-tuning data

For this model we used 15K exmaples of Kotlin Exercices dataset {TODO: link!}. For more information about the dataset follow th link.

Evaluation

To evaluate we used Kotlin Humaneval (more infromation here)

Fine-tuned model:

Model name Kotlin HumanEval Pass Rate Kotlin Completion
base model 26.89 0.388
fine-tuned model 42.24 0.344