File size: 4,455 Bytes
d22a896
9a2ec0a
 
d22a896
 
 
 
 
 
 
 
 
 
 
 
0190d1b
d22a896
9a2ec0a
d22a896
 
 
0190d1b
9a2ec0a
0190d1b
ef881eb
 
 
 
 
 
 
 
 
0190d1b
ef881eb
0190d1b
ef881eb
0190d1b
 
ef881eb
0190d1b
ef881eb
0190d1b
 
ef881eb
0190d1b
ef881eb
0190d1b
 
ef881eb
0190d1b
ef881eb
0190d1b
 
ef881eb
0190d1b
ef881eb
0190d1b
 
ef881eb
0190d1b
ef881eb
0190d1b
d22a896
 
 
 
 
 
 
9a2ec0a
d22a896
9a2ec0a
 
d22a896
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81aef98
d22a896
 
 
 
 
 
 
 
 
 
 
 
81aef98
 
 
 
 
 
 
 
 
 
d22a896
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
---
language:
- en
license: mit
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: roberta-base-rte
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: GLUE RTE
      type: glue
      args: rte
    metrics:
    - type: accuracy
      value: 0.7978339350180506
      name: Accuracy
  - task:
      type: natural-language-inference
      name: Natural Language Inference
    dataset:
      name: glue
      type: glue
      config: rte
      split: validation
    metrics:
    - type: accuracy
      value: 0.7906137184115524
      name: Accuracy
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMWVhOWZkNGYyMWRmNzdmZTM5MTVmNzFhNjVlMzA1NWU4YjJjODk5ZjM4MTY1Yjg0MTc0MmRmZTNkMzIwZDAzNyIsInZlcnNpb24iOjF9.nFZpFXDSLEIcO-_Z43_5b08GIVQiU9hFUEZpTftW3h6_zqIYZSuM7jOIuDYS3YYWMz42NoH_kosEpJg7TK15Bg
    - type: precision
      value: 0.7552447552447552
      name: Precision
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDYxZTkzZjk1NDU0MjhmNzYxM2IzNzJjNjE1Y2UxYTQ0MTJmNjJlMmUzNGY3MDdiMDAyZjQ2MmE4ODExYjYxNiIsInZlcnNpb24iOjF9.98rxE2rgU5ECIv4MGzMnaPRRYg3kGLsG4pZbMuYeAFEfXqBU1K0i_G-_cU7oxIqGypNmMhYVhVxZfC7wS_saAw
    - type: recall
      value: 0.8244274809160306
      name: Recall
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNTNhNDZiZjMzOWM0ZGJkODMzM2VmOGYxMTYyZDNjYTgwN2NiMDFlOGI4NzM5NjQ5ODc4MWM2YmM5MTZjMWFiOCIsInZlcnNpb24iOjF9.C9aEgIz392h-zFSd98CSmzQ7Y6N0Xq3VmGIMEq9aP3dQPPrtUfl9Ms_QMSgSyWMPDYHup3SAGAP0JmkiVeOoBg
    - type: auc
      value: 0.8564258078008994
      name: AUC
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNWVlNGVhOTRkNjUxMGMwZmE0YzBjZDQ0YzQ0ODRmYTc0YjI0MDQ2NTNkOWQ2YjU3MmI5NzI4ZWIwMzBlNTQ1NyIsInZlcnNpb24iOjF9.hSyJjOktSt3AItNnVtgWO9jgHwtNbhv4_KrWEV1r_ywopvbpNmSG4yzaI9PZ_bQQ-4ZSmFM8zUYxCl656TWoDQ
    - type: f1
      value: 0.7883211678832117
      name: F1
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNGI4Mzk1MTkyZGJkZjQ1MWZkZDIyZTA3OTU0YmZhNjI4NGUxMjk4ZGZhNjZkN2JmZWRmZGU3OWM5Zjc0ODg4NyIsInZlcnNpb24iOjF9.gkQh5Y4dm8NimTtI0i-gHAYTxFRNlOtdgz-NJW8EvNKeFNWYXqa495Q-KEnSBRv88RKiNQXBp-3fyttjhX2HCw
    - type: loss
      value: 0.5560466051101685
      name: loss
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZjczNTgxODRlN2Q4NmUyOTdjNzE0ZTZkOWVjZDgzNTdhODAyNGVkM2M1M2I4MGM2ZWMyMDE0ODdhMzQ0N2E1NCIsInZlcnNpb24iOjF9.TfXjqAGtiIQ62HzMkEQmKMMcL9a9bvfBTJARVmTPlIdOOxxF-xuVLXSyFqq2ajhDJXmUEETXBcFzSon_zbHTCQ
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# roberta-base-rte

This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the GLUE RTE dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5446
- Accuracy: 0.7978

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 10.0

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 156  | 0.7023          | 0.4729   |
| No log        | 2.0   | 312  | 0.6356          | 0.6895   |
| No log        | 3.0   | 468  | 0.5177          | 0.7617   |
| 0.6131        | 4.0   | 624  | 0.6238          | 0.7473   |
| 0.6131        | 5.0   | 780  | 0.5446          | 0.7978   |
| 0.6131        | 6.0   | 936  | 0.9697          | 0.7545   |
| 0.2528        | 7.0   | 1092 | 1.1004          | 0.7690   |
| 0.2528        | 8.0   | 1248 | 1.1937          | 0.7726   |
| 0.2528        | 9.0   | 1404 | 1.3313          | 0.7726   |
| 0.1073        | 10.0  | 1560 | 1.3534          | 0.7726   |


### Framework versions

- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.1.0
- Tokenizers 0.12.1