File size: 4,220 Bytes
12ede64
c2f58c0
 
12ede64
 
 
 
 
 
 
 
 
 
 
 
4e0a36a
12ede64
c2f58c0
12ede64
 
 
4e0a36a
c2f58c0
4e0a36a
e7669ea
 
 
 
 
 
 
 
 
4e0a36a
e7669ea
4e0a36a
e7669ea
4e0a36a
 
e7669ea
4e0a36a
e7669ea
4e0a36a
 
e7669ea
4e0a36a
e7669ea
4e0a36a
 
e7669ea
4e0a36a
e7669ea
4e0a36a
 
e7669ea
4e0a36a
e7669ea
4e0a36a
 
e7669ea
4e0a36a
e7669ea
4e0a36a
12ede64
 
 
 
 
 
 
c2f58c0
12ede64
c2f58c0
 
12ede64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
---
language:
- en
license: mit
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: roberta-base-qnli
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: GLUE QNLI
      type: glue
      args: qnli
    metrics:
    - type: accuracy
      value: 0.9245835621453414
      name: Accuracy
  - task:
      type: natural-language-inference
      name: Natural Language Inference
    dataset:
      name: glue
      type: glue
      config: qnli
      split: validation
    metrics:
    - type: accuracy
      value: 0.924400512538898
      name: Accuracy
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNmE1ZDY2YTAzNDFiNDdlMGFlNjk2OTkyNjVlMjgwNDJjMzBlMzkwMGZjOWNhZmY2OWFiZjVmOGZlZmU5OGUxNCIsInZlcnNpb24iOjF9._WT9aiP0YGqyVIBSqUt5E6MT6EjB8g2ol_xbl0d1RGLev-eYtACpvAex_qckbXcxqFSENjVqtGx24MqXvQZyAA
    - type: precision
      value: 0.9171997157071784
      name: Precision
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDg3ZGEwNTNmZjc2ZDNmZGY5NzgzMDRlMzBiODc0ZDY2NDE5NDRiYzNmYzg4YzQ5ZGM0MmI0ODA5NjQ3OTcxMiIsInZlcnNpb24iOjF9.CCCWPcZ3Ut8yjdal-62KxakOqVF7Vfj_A6etOxRV4pUa1WSpdOtK4BobR59tJKtfUw_l-h32EMMGQK0ZQBNCAA
    - type: recall
      value: 0.9348062296269467
      name: Recall
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZDI0OTNkOWQ2NGYzYTQ5ZDcwNjk1NDJhYTMzNWQ2ZTkyZDcxZTA5OTFkZTNjZDBmMGZjMDQ4YmI2M2Y3ZWE2YSIsInZlcnNpb24iOjF9.gfgQq9FgLkOA4cBylEAVoJZLupqglQusjnpyd3MAk1zxLeFhYSQOiRmjjW2nPNV2cJM43bR4XPsqePWzWimzDA
    - type: auc
      value: 0.9744865501321541
      name: AUC
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiODkyODMyZTRmYTIxYmFjNWM3MWI3ZjBhOWExNDkzMjc5MGM2NmNlYmE5NjI0NDU1NjlmYTJkZWNjMDA5ZjhkMiIsInZlcnNpb24iOjF9._CNFbnkR7n2CDTj2lIc6zGSWCFCEJ0V4sj7JZ44xL_cxILp5-m7Y-Dmi43Hk19FaBLfRzdmK9UD-BScNn_vsBw
    - type: f1
      value: 0.9259192825112107
      name: F1
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOWVjN2E1YWNkMDgyMTk0Yjc2ZGFhYzJjNjFkY2VmNmU0NjNjZWQ3N2ZhYzgzNTg2N2FlNmY4YmMyYzJkNjFhOSIsInZlcnNpb24iOjF9.I1dkHU12MMeZerjCJ8JfBMyaR1fCEHvTZfpZN-hD2hTITjgkFcTFC_jFvydSwzKo7yX0ztA5ID3qqgW4qD7bAQ
    - type: loss
      value: 0.2990749478340149
      name: loss
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZTM2ZjAwOWNjNWE3NjcwYTVmZTIyY2YzNGI3Mzk5ZjM0YjVmYjg3ODA4Mjc3NWViMDkxMDlmZWRiNTdiOGNjMCIsInZlcnNpb24iOjF9.ODKlAkIeFLR4XiugSVARPvDgVUf6bQas9gSm8r_Q8xzZISaVIOUKNs2Z7kq443LiBBulvBoPaapNPpwkBbMkAw
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# roberta-base-qnli

This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the GLUE QNLI dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2992
- Accuracy: 0.9246

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 10.0

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.2986        | 1.0   | 6547  | 0.2215          | 0.9171   |
| 0.243         | 2.0   | 13094 | 0.2321          | 0.9173   |
| 0.2048        | 3.0   | 19641 | 0.2992          | 0.9246   |
| 0.1629        | 4.0   | 26188 | 0.3538          | 0.9220   |
| 0.1308        | 5.0   | 32735 | 0.3533          | 0.9209   |
| 0.0846        | 6.0   | 39282 | 0.4277          | 0.9229   |


### Framework versions

- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.1.0
- Tokenizers 0.12.1