File size: 3,833 Bytes
41d2058 3b2f283 41d2058 3b2f283 d86c896 41d2058 9cae29b 3b2f283 eca1743 3b2f283 eca1743 3b2f283 eca1743 3b2f283 eca1743 c6af5ee eca1743 c6af5ee eca1743 c6af5ee eca1743 c6af5ee eca1743 c6af5ee eca1743 c6af5ee eca1743 c6af5ee eca1743 c6af5ee eca1743 c6af5ee eca1743 c6af5ee eca1743 c6af5ee eca1743 c6af5ee eca1743 c6af5ee eca1743 41d2058 3b2f283 41d2058 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
---
language:
- en
license: mit
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
base_model: roberta-base
model-index:
- name: roberta-base-mrpc
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: GLUE MRPC
type: glue
args: mrpc
metrics:
- type: accuracy
value: 0.9019607843137255
name: Accuracy
- type: f1
value: 0.9295774647887324
name: F1
- task:
type: natural-language-inference
name: Natural Language Inference
dataset:
name: glue
type: glue
config: mrpc
split: validation
metrics:
- type: accuracy
value: 0.9019607843137255
name: Accuracy
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOTgxMmY3ZTkyZmYyZTJhZjQzNzkxYWRhMzRkNjQ4MDU3NmRhNzJmNDUwMmI5NWQyYTQ1ODRmMGVhOGI3NzMxZCIsInZlcnNpb24iOjF9.E6AhJwh_S4LfzhJjvlUzGWDmJYzxwbzL0IKqIIiNhFGg-_N5G9_VJAgqiQz-6i9xGHB2fJM-G5XinjHRk4SeBA
- type: precision
value: 0.9134948096885813
name: Precision
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiY2NmZThjNDI0YThmMzE4MjdhNjM3OTFmYzAwNzY4ZTM4ZDc4ZDA3NTYzYWRhNTdlNWMyZWI1NTMwZmFhNzQ5NyIsInZlcnNpb24iOjF9.nOkbqzXVD3r9LrIePn7o9Ny8_GiPoSBskCx3ey3Hrexrx00Gj6B9wkVvc8EcV5bAsBTeAJSeqO7ncS_-WJjlCQ
- type: recall
value: 0.946236559139785
name: Recall
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNzA2NDgzYTkzMTY4ZDQxYTdlZmM2ODY4YzM4N2E0ODk0YzRkNDI3YTFhMGIwNDZhNTI0MmIyNGU0YmFlMzRjYyIsInZlcnNpb24iOjF9.jNL0IQk6XnUd6zFfHwTSL41Ax35OdoE8xQA-2PqEFs9UtT2O9fo6cZyXDln6QPMGHOlwNgPp_PX6mLrmDHN6Cw
- type: auc
value: 0.9536411880747964
name: AUC
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYmE0ZWZlNGFkMzdhNTdjZjY0NDkzNDZhOTJmY2Q1MWU4MTc3NGMwYmRjNTlkMTZjOTBiNjIwOTUzZWZhZTcwNSIsInZlcnNpb24iOjF9.ZVekwshvwAi8K6gYJmKEDk8riyiOqDhsfzbSxXa-AWKvREksbNtsDo_u6iOEYImGLbcEFfgesDE-cBnEsmMdAg
- type: f1
value: 0.9295774647887324
name: F1
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMDQwMmE1Y2FhMGE4M2Q5YjU3NTAyZTljZWQ5ODRkMGEyZmI4M2FhNDJjYjlkMzllMzU5NDQ1ZWI2YjNiNmM0OCIsInZlcnNpb24iOjF9.a2jDnaSZhCJ_3f1rBJ8mXfyLCRR6Y9tYb_Hayi00NPWrejDML8Bc-LoobxlPdbd8x8LVJ2vOWhbH5LP4J9kOBg
- type: loss
value: 0.48942330479621887
name: loss
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiODFkMWQ5NTQ0ODMwNjQ2MzcyODA1ODlhZGUzNTg4NjE2M2U5MmIzYjQ3NzgxNTQyZDkyMGNiM2ZhYzc4ZGY0MSIsInZlcnNpb24iOjF9.K6fAIi21ZNtOqKS5c9jlO7kXISNHb0DD4pzdgLsESVjjOYxqS4C9f_OBJjIV-KtuwQGbi3yNC5Y4jTWk2HvNCQ
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mrpc
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the GLUE MRPC dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4898
- Accuracy: 0.9020
- F1: 0.9296
- Combined Score: 0.9158
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 5.0
### Training results
### Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.1.0
- Tokenizers 0.12.1
|