File size: 2,175 Bytes
0804d9d 65cd154 0804d9d 65cd154 0804d9d 65cd154 0804d9d 65cd154 0804d9d 65cd154 0804d9d 65cd154 0804d9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: bert-base-uncased-mrpc
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE MRPC
type: glue
args: mrpc
metrics:
- name: Accuracy
type: accuracy
value: 0.8578431372549019
- name: F1
type: f1
value: 0.9023569023569024
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-uncased-mrpc
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the GLUE MRPC dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5572
- Accuracy: 0.8578
- F1: 0.9024
- Combined Score: 0.8801
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 5.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:|
| No log | 1.0 | 230 | 0.4111 | 0.8088 | 0.8704 | 0.8396 |
| No log | 2.0 | 460 | 0.3762 | 0.8480 | 0.8942 | 0.8711 |
| 0.4287 | 3.0 | 690 | 0.5572 | 0.8578 | 0.9024 | 0.8801 |
| 0.4287 | 4.0 | 920 | 0.6087 | 0.8554 | 0.8977 | 0.8766 |
| 0.1172 | 5.0 | 1150 | 0.6524 | 0.8456 | 0.8901 | 0.8678 |
### Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.1.0
- Tokenizers 0.12.1
|