File size: 3,110 Bytes
d8a6a96 a7d6832 d8a6a96 5867026 d8a6a96 3f61b30 5867026 ea19a79 5867026 d8a6a96 3272069 d8a6a96 bcb19a1 d8a6a96 3f61b30 5867026 3f61b30 d8a6a96 3f61b30 5867026 d0002b6 5867026 d0002b6 5867026 d0002b6 5867026 d0002b6 5867026 bcb19a1 d8a6a96 d0002b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
---
language: fr
datasets:
- Jean-Baptiste/wikiner_fr
widget:
- text: "Je m'appelle jean-baptiste et je vis à montréal"
---
# camembert-ner: model fine-tuned from camemBERT for NER task.
## Introduction
[camembert-ner] is a NER model that was fine-tuned from camemBERT on wikiner-fr dataset.
Model was trained on wikiner-fr dataset (~170 634 sentences).
Model was validated on emails/chat data and overperformed other models on this type of data specifically.
In particular the model seems to work better on entity that don't start with an upper case.
## How to use camembert-ner with HuggingFace
##### Load camembert-ner and its sub-word tokenizer :
```python
from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("Jean-Baptiste/camembert-ner")
model = AutoModelForTokenClassification.from_pretrained("Jean-Baptiste/camembert-ner")
##### Process text sample (from wikipedia)
from transformers import pipeline
nlp = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="simple")
nlp("Apple est créée le 1er avril 1976 dans le garage de la maison d'enfance de Steve Jobs à Los Altos en Californie par Steve Jobs, Steve Wozniak et Ronald Wayne14, puis constituée sous forme de société le 3 janvier 1977 à l'origine sous le nom d'Apple Computer, mais pour ses 30 ans et pour refléter la diversification de ses produits, le mot « computer » est retiré le 9 janvier 2015.")
[{'entity_group': 'ORG',
'score': 0.9472818374633789,
'word': 'Apple',
'start': 0,
'end': 5},
{'entity_group': 'PER',
'score': 0.9838564991950989,
'word': 'Steve Jobs',
'start': 74,
'end': 85},
{'entity_group': 'LOC',
'score': 0.9831605950991312,
'word': 'Los Altos',
'start': 87,
'end': 97},
{'entity_group': 'LOC',
'score': 0.9834540486335754,
'word': 'Californie',
'start': 100,
'end': 111},
{'entity_group': 'PER',
'score': 0.9841555754343668,
'word': 'Steve Jobs',
'start': 115,
'end': 126},
{'entity_group': 'PER',
'score': 0.9843501806259155,
'word': 'Steve Wozniak',
'start': 127,
'end': 141},
{'entity_group': 'PER',
'score': 0.9841533899307251,
'word': 'Ronald Wayne',
'start': 144,
'end': 157},
{'entity_group': 'ORG',
'score': 0.9468960364659628,
'word': 'Apple Computer',
'start': 243,
'end': 257}]
```
## Model performances (metric: seqeval)
Global
```
'precision': 0.8859
'recall': 0.8971
'f1': 0.8914
```
By entity
```
'LOC': {'precision': 0.8905576596578294,
'recall': 0.900554675118859,
'f1': 0.8955282684352223},
'MISC': {'precision': 0.8175627240143369,
'recall': 0.8117437722419929,
'f1': 0.8146428571428571},
'ORG': {'precision': 0.8099480326651819,
'recall': 0.8265151515151515,
'f1': 0.8181477315335584},
'PER': {'precision': 0.9372509960159362,
'recall': 0.959812321501428,
'f1': 0.9483975005039308}
```
A short article on how I used the result of this model to train a LSTM model for signature detection in emails:
https://medium.com/@jean-baptiste.polle/lstm-model-for-email-signature-detection-8e990384fefa
|