File size: 5,815 Bytes
05744dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
import argparse
import collections
import gzip
import html
import json
import os
import random
import re
import torch
from tqdm import tqdm
import numpy as np
from utils import *
from transformers import LlamaForCausalLM, LlamaTokenizer, LlamaConfig, AutoTokenizer, AutoModel
def load_data(args):
item2feature_path = args.data_path
item2feature = load_json(item2feature_path)
return item2feature
def generate_text(item2feature, features):
item_text_list = []
for item in item2feature:
data = item2feature[item]
text = []
for meta_key in features:
if meta_key in data:
meta_value = clean_text(data[meta_key])
text.append(meta_value.strip())
item_text_list.append([int(item), text])
return item_text_list
def preprocess_text(args):
print('Process text data ...')
# print('Dataset: ', args.dataset)
item2feature = load_data(args)
# load item text and clean
item_text_list = generate_text(item2feature, ['title'])
# item_text_list = generate_text(item2feature, ['title'])
# return: list of (item_ID, cleaned_item_text)
return item_text_list
def generate_item_embedding(args, item_text_list, tokenizer, model, word_drop_ratio=-1, save_path = ''):
print('Generate text embedding ...')
# print(' Dataset: ', args.dataset)
items, texts = zip(*item_text_list)
order_texts = [[0]] * len(items)
for item, text in zip(items, texts):
order_texts[item] = text
for text in order_texts:
assert text != [0]
embeddings = []
emb_result = []
start, batch_size = 0, 1
with torch.no_grad():
while start < len(order_texts):
if (start+1)%100==0:
print("==>",start+1)
field_texts = order_texts[start: start + batch_size]
# print(field_texts)
field_texts = zip(*field_texts)
field_embeddings = []
for sentences in field_texts:
sentences = list(sentences)
# print(sentences)
if word_drop_ratio > 0:
print(f'Word drop with p={word_drop_ratio}')
new_sentences = []
for sent in sentences:
new_sent = []
sent = sent.split(' ')
for wd in sent:
rd = random.random()
if rd > word_drop_ratio:
new_sent.append(wd)
new_sent = ' '.join(new_sent)
new_sentences.append(new_sent)
sentences = new_sentences
encoded_sentences = tokenizer(sentences, max_length=args.max_sent_len,
truncation=True, return_tensors='pt',padding="longest").to(args.device)
outputs = model(input_ids=encoded_sentences.input_ids,
attention_mask=encoded_sentences.attention_mask)
masked_output = outputs.last_hidden_state * encoded_sentences['attention_mask'].unsqueeze(-1)
mean_output = masked_output.sum(dim=1) / encoded_sentences['attention_mask'].sum(dim=-1, keepdim=True)
mean_output = mean_output.detach().cpu()
emb_result.append(mean_output.numpy().tolist())
field_embeddings.append(mean_output)
field_mean_embedding = torch.stack(field_embeddings, dim=0).mean(dim=0)
embeddings.append(field_mean_embedding)
start += batch_size
embeddings = torch.cat(embeddings, dim=0).numpy()
print('Embeddings shape: ', embeddings.shape)
all_results = {
'text':[],
'node_type':[],
'emb':[]
}
all_results['text'] = [t[0] for t in texts]
all_results['node_type'] = [1] * len(all_results['text'])
for emb in emb_result:
str_emb = ''
for x in emb:
str_emb = str_emb + str(x) + ' '
all_results['emb'].append(str_emb[:-1])
import pandas as pd
df = pd.DataFrame(all_results)
# header = 0: w/o column name; index = False: w/o index column
df.to_csv(args.save_path, sep = '\t', header = 0, index = False)
# file = os.path.join(args.root, args.dataset + '.emb-' + args.plm_name + "-td" + ".npy")
# np.save(file, embeddings)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default='Arts', help='Instruments / Arts / Games')
parser.add_argument('--root', type=str, default="")
parser.add_argument('--gpu_id', type=int, default=0, help='ID of running GPU')
parser.add_argument('--plm_name', type=str, default='llama')
parser.add_argument('--plm_checkpoint', type=str,
default='')
parser.add_argument('--max_sent_len', type=int, default=2048)
parser.add_argument('--word_drop_ratio', type=float, default=-1, help='word drop ratio, do not drop by default')
parser.add_argument('--data_path', type=str, default='')
parser.add_argument('--save_path', type=str, default='')
return parser.parse_args()
if __name__ == '__main__':
args = parse_args()
args.root = os.path.join(args.root, args.dataset)
device = set_device(args.gpu_id)
args.device = device
item_text_list = preprocess_text(args)
plm_tokenizer, plm_model = load_plm(args.plm_checkpoint)
if plm_tokenizer.pad_token_id is None:
plm_tokenizer.pad_token_id = 0
plm_model = plm_model.to(device)
generate_item_embedding(args, item_text_list, plm_tokenizer,
plm_model, word_drop_ratio = args.word_drop_ratio,
save_path = args.save_path) |