File size: 5,815 Bytes
05744dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import argparse
import collections
import gzip
import html
import json
import os
import random
import re
import torch
from tqdm import tqdm
import numpy as np
from utils import *
from transformers import LlamaForCausalLM, LlamaTokenizer, LlamaConfig, AutoTokenizer, AutoModel


def load_data(args):

    item2feature_path = args.data_path
    item2feature = load_json(item2feature_path)

    return item2feature

def generate_text(item2feature, features):
    item_text_list = []

    for item in item2feature:
        data = item2feature[item]
        text = []
        for meta_key in features:
            if meta_key in data:
                meta_value = clean_text(data[meta_key])
                text.append(meta_value.strip())

        item_text_list.append([int(item), text])

    return item_text_list

def preprocess_text(args):
    print('Process text data ...')
    # print('Dataset: ', args.dataset)

    item2feature = load_data(args)
    # load item text and clean
    item_text_list = generate_text(item2feature, ['title'])
    # item_text_list = generate_text(item2feature, ['title'])
    # return: list of (item_ID, cleaned_item_text)
    return item_text_list

def generate_item_embedding(args, item_text_list, tokenizer, model, word_drop_ratio=-1, save_path = ''):
    print('Generate text embedding ...')
    # print(' Dataset: ', args.dataset)

    items, texts = zip(*item_text_list)
    order_texts = [[0]] * len(items)
    for item, text in zip(items, texts):
        order_texts[item] = text
    for text in order_texts:
        assert text != [0]

    embeddings = []
    emb_result = []
    start, batch_size = 0, 1
    with torch.no_grad():
        while start < len(order_texts):
            if (start+1)%100==0:
                print("==>",start+1)
            field_texts = order_texts[start: start + batch_size]
            # print(field_texts)
            field_texts = zip(*field_texts)
    
            field_embeddings = []
            for sentences in field_texts:
                sentences = list(sentences)
                # print(sentences)
                if word_drop_ratio > 0:
                    print(f'Word drop with p={word_drop_ratio}')
                    new_sentences = []
                    for sent in sentences:
                        new_sent = []
                        sent = sent.split(' ')
                        for wd in sent:
                            rd = random.random()
                            if rd > word_drop_ratio:
                                new_sent.append(wd)
                        new_sent = ' '.join(new_sent)
                        new_sentences.append(new_sent)
                    sentences = new_sentences
                encoded_sentences = tokenizer(sentences, max_length=args.max_sent_len,
                                              truncation=True, return_tensors='pt',padding="longest").to(args.device)
                outputs = model(input_ids=encoded_sentences.input_ids,
                                attention_mask=encoded_sentences.attention_mask)
    
                masked_output = outputs.last_hidden_state * encoded_sentences['attention_mask'].unsqueeze(-1)
                mean_output = masked_output.sum(dim=1) / encoded_sentences['attention_mask'].sum(dim=-1, keepdim=True)
                mean_output = mean_output.detach().cpu()
                emb_result.append(mean_output.numpy().tolist())
                field_embeddings.append(mean_output)
    
            field_mean_embedding = torch.stack(field_embeddings, dim=0).mean(dim=0)
            embeddings.append(field_mean_embedding)
            start += batch_size

    embeddings = torch.cat(embeddings, dim=0).numpy()
    print('Embeddings shape: ', embeddings.shape)

    all_results = {
        'text':[],
        'node_type':[],
        'emb':[]
    }

    all_results['text'] = [t[0] for t in texts]
    all_results['node_type'] = [1] * len(all_results['text'])
    for emb in emb_result:
        str_emb = ''
        for x in emb:
            str_emb = str_emb + str(x) + ' '
    all_results['emb'].append(str_emb[:-1])
    
    import pandas as pd
    df = pd.DataFrame(all_results)
    # header = 0: w/o column name; index = False: w/o index column 
    df.to_csv(args.save_path, sep = '\t', header = 0, index = False)

    # file = os.path.join(args.root, args.dataset + '.emb-' + args.plm_name + "-td" + ".npy")
    # np.save(file, embeddings)


def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument('--dataset', type=str, default='Arts', help='Instruments / Arts / Games')
    parser.add_argument('--root', type=str, default="")
    parser.add_argument('--gpu_id', type=int, default=0, help='ID of running GPU')
    parser.add_argument('--plm_name', type=str, default='llama')
    parser.add_argument('--plm_checkpoint', type=str,
                        default='')
    parser.add_argument('--max_sent_len', type=int, default=2048)
    parser.add_argument('--word_drop_ratio', type=float, default=-1, help='word drop ratio, do not drop by default')
    parser.add_argument('--data_path', type=str, default='')
    parser.add_argument('--save_path', type=str, default='')
    return parser.parse_args()


if __name__ == '__main__':
    args = parse_args()

    args.root = os.path.join(args.root, args.dataset)

    device = set_device(args.gpu_id)
    args.device = device

    item_text_list = preprocess_text(args)

    plm_tokenizer, plm_model = load_plm(args.plm_checkpoint)
    if plm_tokenizer.pad_token_id is None:
        plm_tokenizer.pad_token_id = 0
    plm_model = plm_model.to(device)

    generate_item_embedding(args, item_text_list, plm_tokenizer,
                            plm_model, word_drop_ratio = args.word_drop_ratio, 
                            save_path = args.save_path)