File size: 8,933 Bytes
8a506a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
import json
import logging
import os
import random
import datetime
import numpy as np
import torch
from torch.utils.data import ConcatDataset
from data import SeqRecDataset, ItemFeatDataset, ItemSearchDataset, FusionSeqRecDataset, SeqRecTestDataset, PreferenceObtainDataset
def parse_global_args(parser):
parser.add_argument("--seed", type=int, default=42, help="Random seed")
parser.add_argument("--base_model", type=str,
default="./llama-7b/",
help="basic model path")
parser.add_argument("--output_dir", type=str,
default="./ckpt/",
help="The output directory")
return parser
def parse_dataset_args(parser):
parser.add_argument("--data_path", type=str, default="", help="data directory")
parser.add_argument("--tasks", type=str, default="seqrec,item2index,index2item,fusionseqrec,itemsearch,preferenceobtain",
help="Downstream tasks, separate by comma")
parser.add_argument("--dataset", type=str, default="Games", help="Dataset name")
parser.add_argument("--inter_path", type=str, default="", help="data directory")
parser.add_argument("--feature_path", type=str, default="", help="data directory")
parser.add_argument("--index_file", type=str, default=".index.json", help="the item indices file")
parser.add_argument("--dataloader_num_workers", type=int, default=0, help="dataloader num_workers")
parser.add_argument("--dataloader_prefetch_factor", type=int, default=2, help="dataloader prefetch_factor")
# arguments related to sequential task
parser.add_argument("--max_his_len", type=int, default=20,
help="the max number of items in history sequence, -1 means no limit")
parser.add_argument("--add_prefix", action="store_true", default=False,
help="whether add sequential prefix in history")
parser.add_argument("--his_sep", type=str, default=", ", help="The separator used for history")
parser.add_argument("--only_train_response", action="store_true", default=False,
help="whether only train on responses")
parser.add_argument("--train_prompt_sample_num", type=str, default="1,1,1,1,1,1",
help="the number of sampling prompts for each task")
parser.add_argument("--train_data_sample_num", type=str, default="0,0,0,100000,0,0",
help="the number of sampling prompts for each task")
parser.add_argument("--valid_prompt_id", type=int, default=0,
help="The prompt used for validation")
parser.add_argument("--sample_valid", action="store_true", default=True,
help="use sampled prompt for validation")
parser.add_argument("--valid_prompt_sample_num", type=int, default=2,
help="the number of sampling validation sequential recommendation prompts")
return parser
def parse_train_args(parser):
parser.add_argument("--optim", type=str, default="adamw_torch", help='The name of the optimizer')
parser.add_argument("--epochs", type=int, default=4)
parser.add_argument("--learning_rate", type=float, default=2e-5)
parser.add_argument("--per_device_batch_size", type=int, default=8)
parser.add_argument("--gradient_accumulation_steps", type=int, default=2)
parser.add_argument("--logging_step", type=int, default=10)
parser.add_argument("--model_max_length", type=int, default=2048)
parser.add_argument("--weight_decay", type=float, default=0.01)
parser.add_argument("--lora_r", type=int, default=8)
parser.add_argument("--lora_alpha", type=int, default=32)
parser.add_argument("--lora_dropout", type=float, default=0.05)
parser.add_argument("--lora_target_modules", type=str,
default="q_proj,v_proj,k_proj,o_proj,gate_proj,down_proj,up_proj", help="separate by comma")
parser.add_argument("--lora_modules_to_save", type=str,
default="embed_tokens,lm_head", help="separate by comma")
parser.add_argument("--resume_from_checkpoint", type=str, default=None, help="either training checkpoint or final adapter")
parser.add_argument("--warmup_ratio", type=float, default=0.01)
parser.add_argument("--lr_scheduler_type", type=str, default="cosine")
parser.add_argument("--save_and_eval_strategy", type=str, default="epoch")
parser.add_argument("--save_and_eval_steps", type=int, default=1000)
parser.add_argument("--fp16", action="store_true", default=False)
parser.add_argument("--bf16", action="store_true", default=False)
parser.add_argument("--deepspeed", type=str, default="./config/ds_z3_bf16.json")
return parser
def parse_test_args(parser):
parser.add_argument("--ckpt_path", type=str,
default="",
help="The checkpoint path")
parser.add_argument("--lora", action="store_true", default=False)
parser.add_argument("--filter_items", action="store_true", default=False,
help="whether filter illegal items")
parser.add_argument("--results_file", type=str,
default="./results/test-ddp.json",
help="result output path")
parser.add_argument("--test_batch_size", type=int, default=1)
parser.add_argument("--num_beams", type=int, default=20)
parser.add_argument("--sample_num", type=int, default=-1,
help="test sample number, -1 represents using all test data")
parser.add_argument("--gpu_id", type=int, default=0,
help="GPU ID when testing with single GPU")
parser.add_argument("--test_prompt_ids", type=str, default="0",
help="test prompt ids, separate by comma. 'all' represents using all")
parser.add_argument("--metrics", type=str, default="hit@1,hit@5,hit@10,ndcg@5,ndcg@10",
help="test metrics, separate by comma")
parser.add_argument("--test_task", type=str, default="SeqRec")
return parser
def get_local_time():
cur = datetime.datetime.now()
cur = cur.strftime("%b-%d-%Y_%H-%M-%S")
return cur
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.enabled = False
def ensure_dir(dir_path):
os.makedirs(dir_path, exist_ok=True)
def load_datasets(args):
tasks = args.tasks.split(",")
train_prompt_sample_num = [int(_) for _ in args.train_prompt_sample_num.split(",")]
assert len(tasks) == len(train_prompt_sample_num), "prompt sample number does not match task number"
train_data_sample_num = [int(_) for _ in args.train_data_sample_num.split(",")]
assert len(tasks) == len(train_data_sample_num), "data sample number does not match task number"
train_datasets = []
for task, prompt_sample_num,data_sample_num in zip(tasks,train_prompt_sample_num,train_data_sample_num):
if task.lower() == "seqrec":
dataset = SeqRecDataset(args, mode="train", prompt_sample_num=prompt_sample_num, sample_num=data_sample_num)
elif task.lower() == "item2index" or task.lower() == "index2item":
dataset = ItemFeatDataset(args, task=task.lower(), prompt_sample_num=prompt_sample_num, sample_num=data_sample_num)
elif task.lower() == "fusionseqrec":
dataset = FusionSeqRecDataset(args, mode="train", prompt_sample_num=prompt_sample_num, sample_num=data_sample_num)
elif task.lower() == "itemsearch":
dataset = ItemSearchDataset(args, mode="train", prompt_sample_num=prompt_sample_num, sample_num=data_sample_num)
elif task.lower() == "preferenceobtain":
dataset = PreferenceObtainDataset(args, prompt_sample_num=prompt_sample_num, sample_num=data_sample_num)
else:
raise NotImplementedError
train_datasets.append(dataset)
train_data = ConcatDataset(train_datasets)
valid_data = SeqRecDataset(args,"valid",args.valid_prompt_sample_num)
return train_data, valid_data
def load_test_dataset(args):
if args.test_task.lower() == "seqrec":
test_data = SeqRecDataset(args, mode="test", sample_num=args.sample_num)
# test_data = SeqRecTestDataset(args, sample_num=args.sample_num)
elif args.test_task.lower() == "itemsearch":
test_data = ItemSearchDataset(args, mode="test", sample_num=args.sample_num)
elif args.test_task.lower() == "fusionseqrec":
test_data = FusionSeqRecDataset(args, mode="test", sample_num=args.sample_num)
else:
raise NotImplementedError
return test_data
def load_json(file):
with open(file, 'r') as f:
data = json.load(f)
return data
|