File size: 8,384 Bytes
8a506a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import argparse
import json
import os
import sys

import torch
import transformers
import torch.distributed as dist
from torch.utils.data.distributed import DistributedSampler
from torch.nn.parallel import DistributedDataParallel
from peft import PeftModel
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import LlamaForCausalLM, LlamaTokenizer, LlamaConfig

from utils import *
from collator import TestCollator
from prompt import all_prompt
from evaluate import get_topk_results, get_metrics_results


def test_ddp(args):

    set_seed(args.seed)
    world_size = int(os.environ.get("WORLD_SIZE", 1))
    local_rank = int(os.environ.get("LOCAL_RANK") or 0)
    torch.cuda.set_device(local_rank)
    if local_rank == 0:
        print(vars(args))

    dist.init_process_group(backend="nccl", world_size=world_size, rank=local_rank)

    device_map = {"": local_rank}
    device = torch.device("cuda",local_rank)

    tokenizer = LlamaTokenizer.from_pretrained(args.ckpt_path)
    args.lora=True
    if args.lora:
        model = LlamaForCausalLM.from_pretrained(
            args.base_model,
            torch_dtype=torch.float16,
            low_cpu_mem_usage=True,
            device_map=device_map,
        )
        model.resize_token_embeddings(len(tokenizer))
        model = PeftModel.from_pretrained(
            model,
            args.ckpt_path,
            torch_dtype=torch.float16,
            device_map=device_map,
        )
    else:
        model = LlamaForCausalLM.from_pretrained(
            args.ckpt_path,
            torch_dtype=torch.float16,
            low_cpu_mem_usage=True,
            device_map=device_map,
        )
    # assert model.config.vocab_size == len(tokenizer)
    model = DistributedDataParallel(model, device_ids=[local_rank])

    if args.test_prompt_ids == "all":
        if args.test_task.lower() == "seqrec":
            prompt_ids = range(len(all_prompt["seqrec"]))
        elif args.test_task.lower() == "itemsearch":
            prompt_ids = range(len(all_prompt["itemsearch"]))
        elif args.test_task.lower() == "fusionseqrec":
            prompt_ids = range(len(all_prompt["fusionseqrec"]))
    else:
        prompt_ids = [int(_) for _ in args.test_prompt_ids.split(",")]

    test_data = load_test_dataset(args)
    ddp_sampler = DistributedSampler(test_data, num_replicas=world_size, rank=local_rank, drop_last=True)

    test_data = load_test_dataset(args)
    collator = TestCollator(args, tokenizer)
    all_items = test_data.get_all_items()


    prefix_allowed_tokens = test_data.get_prefix_allowed_tokens_fn(tokenizer)


    test_loader = DataLoader(test_data, batch_size=args.test_batch_size, collate_fn=collator,
                             sampler=ddp_sampler, num_workers=2, pin_memory=True)

    if local_rank == 0:
        print("data num:", len(test_data))

    model.eval()

    metrics = args.metrics.split(",")
    all_prompt_results = []
    with torch.no_grad():

        for prompt_id in prompt_ids:

            if local_rank == 0:
                print("Start prompt: ",prompt_id)

            test_loader.dataset.set_prompt(prompt_id)
            metrics_results = {}
            total = 0

            for step, batch in enumerate(tqdm(test_loader)):
                inputs = batch[0].to(device)
                targets = batch[1]
                bs = len(targets)
                num_beams = args.num_beams
                while True:
                    try:
                        output = model.module.generate(
                            input_ids=inputs["input_ids"],
                            attention_mask=inputs["attention_mask"],
                            max_new_tokens=10,
                            prefix_allowed_tokens_fn=prefix_allowed_tokens,
                            num_beams=num_beams,
                            num_return_sequences=num_beams,
                            output_scores=True,
                            return_dict_in_generate=True,
                            early_stopping=True,
                        )
                        break
                    except torch.cuda.OutOfMemoryError as e:
                        print("Out of memory!")
                        num_beams = num_beams -1
                        print("Beam:", num_beams)
                    except Exception:
                        raise RuntimeError

                output_ids = output["sequences"]
                scores = output["sequences_scores"]

                output = tokenizer.batch_decode(
                    output_ids, skip_special_tokens=True
                )

                topk_res = get_topk_results(output, scores, targets, num_beams,
                                            all_items=all_items if args.filter_items else None)

                bs_gather_list = [None for _ in range(world_size)]
                dist.all_gather_object(obj=bs, object_list=bs_gather_list)
                total += sum(bs_gather_list)
                res_gather_list = [None for _ in range(world_size)]
                dist.all_gather_object(obj=topk_res, object_list=res_gather_list)


                if local_rank == 0:
                    all_device_topk_res = []
                    for ga_res in res_gather_list:
                        all_device_topk_res += ga_res
                    batch_metrics_res = get_metrics_results(all_device_topk_res, metrics)
                    for m, res in batch_metrics_res.items():
                        if m not in metrics_results:
                            metrics_results[m] = res
                        else:
                            metrics_results[m] += res

                    if (step + 1) % 50 == 0:
                        temp = {}
                        for m in metrics_results:
                            temp[m] = metrics_results[m] / total
                        print(temp)

                dist.barrier()

            if local_rank == 0:
                for m in metrics_results:
                    metrics_results[m] = metrics_results[m] / total

                all_prompt_results.append(metrics_results)
                print("======================================================")
                print("Prompt {} results: ".format(prompt_id), metrics_results)
                print("======================================================")
                print("")

            dist.barrier()

    dist.barrier()

    if local_rank == 0:
        mean_results = {}
        min_results = {}
        max_results = {}

        for m in metrics:
            all_res = [_[m] for _ in all_prompt_results]
            mean_results[m] = sum(all_res)/len(all_res)
            min_results[m] = min(all_res)
            max_results[m] = max(all_res)

        print("======================================================")
        print("Mean results: ", mean_results)
        print("Min results: ", min_results)
        print("Max results: ", max_results)
        print("======================================================")


        save_data={}
        save_data["test_prompt_ids"] = args.test_prompt_ids
        save_data["mean_results"] = mean_results
        save_data["min_results"] = min_results
        save_data["max_results"] = max_results
        save_data["all_prompt_results"] = all_prompt_results

        with open(args.results_file, "w") as f:
            json.dump(save_data, f, indent=4)
        print("Save file: ", args.results_file)

        import smtplib
        from email.mime.text import MIMEText
        mail_host = 'smtp.qq.com'
        mail_code = 'ouzplpngooqndjcb'
        sender = '1849334588@qq.com'
        receiver = 'esperanto1949@foxmail.com'

        task = '[v67: evaluate lcrec]'
        message = MIMEText('Task {task} Finished'.format(task = task), 'plain', 'utf-8')
        message['Subject'] = 'Auto Email'
        message['From'] = sender
        message['To'] = receiver

        server = smtplib.SMTP_SSL("smtp.qq.com", 465)
        server.login(sender, mail_code)
        server.sendmail(sender, receiver, message.as_string())

        server.quit()



if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="LLMRec_test")
    parser = parse_global_args(parser)
    parser = parse_dataset_args(parser)
    parser = parse_test_args(parser)

    args = parser.parse_args()

    test_ddp(args)