File size: 3,621 Bytes
8a506a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import argparse
import os

import sys
from typing import List

import torch
import transformers

from transformers import LlamaForCausalLM, LlamaTokenizer, LlamaConfig

from utils import *
from collator import Collator

def train(args):

    set_seed(args.seed)
    ensure_dir(args.output_dir)

    device_map = "auto"
    world_size = int(os.environ.get("WORLD_SIZE", 1))
    ddp = world_size != 1
    local_rank = int(os.environ.get("LOCAL_RANK") or 0)
    if local_rank == 0:
        print(vars(args))

    if ddp:
        device_map = {"": local_rank}

    config = LlamaConfig.from_pretrained(args.base_model)
    tokenizer = LlamaTokenizer.from_pretrained(
        args.base_model,
        model_max_length = args.model_max_length,
        padding_side="right",
    )
    tokenizer.pad_token_id = 0
    gradient_checkpointing = True

    train_data, valid_data = load_datasets(args)
    add_num = tokenizer.add_tokens(train_data.datasets[0].get_new_tokens())
    config.vocab_size = len(tokenizer)
    if local_rank == 0:
        print("add {} new token.".format(add_num))
        print("data num:", len(train_data))
        tokenizer.save_pretrained(args.output_dir)
        config.save_pretrained(args.output_dir)

    collator = Collator(args, tokenizer)


    model = LlamaForCausalLM.from_pretrained(
        args.base_model,
        # torch_dtype=torch.float16,
        device_map=device_map,
    )
    model.resize_token_embeddings(len(tokenizer))


    if not ddp and torch.cuda.device_count() > 1:
        model.is_parallelizable = True
        model.model_parallel = True


    trainer = transformers.Trainer(
        model=model,
        train_dataset=train_data,
        eval_dataset=valid_data,
        args=transformers.TrainingArguments(
            seed=args.seed,
            per_device_train_batch_size=args.per_device_batch_size,
            per_device_eval_batch_size=args.per_device_batch_size,
            gradient_accumulation_steps=args.gradient_accumulation_steps,
            warmup_ratio=args.warmup_ratio,
            num_train_epochs=args.epochs,
            learning_rate=args.learning_rate,
            weight_decay=args.weight_decay,
            lr_scheduler_type=args.lr_scheduler_type,
            fp16=args.fp16,
            bf16=args.bf16,
            logging_steps=args.logging_step,
            optim=args.optim,
            gradient_checkpointing=gradient_checkpointing,
            evaluation_strategy=args.save_and_eval_strategy,
            save_strategy=args.save_and_eval_strategy,
            eval_steps=args.save_and_eval_steps,
            save_steps=args.save_and_eval_steps,
            output_dir=args.output_dir,
            save_total_limit=5,
            load_best_model_at_end=True,
            deepspeed=args.deepspeed,
            ddp_find_unused_parameters=False if ddp else None,
            report_to=None,
            eval_delay= 1 if args.save_and_eval_strategy=="epoch" else 2000,
            dataloader_num_workers = args.dataloader_num_workers,
            dataloader_prefetch_factor = args.dataloader_prefetch_factor
        ),
        tokenizer=tokenizer,
        data_collator=collator,
    )
    model.config.use_cache = False


    trainer.train(
        resume_from_checkpoint=args.resume_from_checkpoint,
    )

    trainer.save_state()
    trainer.save_model(output_dir=args.output_dir)




if __name__ == "__main__":
    parser = argparse.ArgumentParser(description='LLMRec')
    parser = parse_global_args(parser)
    parser = parse_train_args(parser)
    parser = parse_dataset_args(parser)

    args = parser.parse_args()

    train(args)