File size: 9,219 Bytes
8a506a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
import html
import json
import os
import pickle
import re
import time
import torch
# import gensim
from transformers import AutoModel, AutoTokenizer
import collections
import openai
def get_res_batch(model_name, prompt_list, max_tokens, api_info):
while True:
try:
res = openai.Completion.create(
model=model_name,
prompt=prompt_list,
temperature=0.4,
max_tokens=max_tokens,
top_p=1,
frequency_penalty=0,
presence_penalty=0
)
output_list = []
for choice in res['choices']:
output = choice['text'].strip()
output_list.append(output)
return output_list
except openai.error.AuthenticationError as e:
print(e)
openai.api_key = api_info["api_key_list"].pop()
time.sleep(10)
except openai.error.RateLimitError as e:
print(e)
if str(e) == "You exceeded your current quota, please check your plan and billing details.":
openai.api_key = api_info["api_key_list"].pop()
time.sleep(10)
else:
print('\nopenai.error.RateLimitError\nRetrying...')
time.sleep(10)
except openai.error.ServiceUnavailableError as e:
print(e)
print('\nopenai.error.ServiceUnavailableError\nRetrying...')
time.sleep(10)
except openai.error.Timeout:
print('\nopenai.error.Timeout\nRetrying...')
time.sleep(10)
except openai.error.APIError as e:
print(e)
print('\nopenai.error.APIError\nRetrying...')
time.sleep(10)
except openai.error.APIConnectionError as e:
print(e)
print('\nopenai.error.APIConnectionError\nRetrying...')
time.sleep(10)
except Exception as e:
print(e)
return None
def check_path(path):
if not os.path.exists(path):
os.makedirs(path)
def set_device(gpu_id):
if gpu_id == -1:
return torch.device('cpu')
else:
return torch.device(
'cuda:' + str(gpu_id) if torch.cuda.is_available() else 'cpu')
def load_plm(model_path='bert-base-uncased'):
tokenizer = AutoTokenizer.from_pretrained(model_path,)
print("Load Model:", model_path)
model = AutoModel.from_pretrained(model_path,low_cpu_mem_usage=True,)
return tokenizer, model
def load_json(file):
with open(file, 'r') as f:
data = json.load(f)
return data
def clean_text(raw_text):
if isinstance(raw_text, list):
new_raw_text=[]
for raw in raw_text:
raw = html.unescape(raw)
raw = re.sub(r'</?\w+[^>]*>', '', raw)
raw = re.sub(r'["\n\r]*', '', raw)
new_raw_text.append(raw.strip())
cleaned_text = ' '.join(new_raw_text)
else:
if isinstance(raw_text, dict):
cleaned_text = str(raw_text)[1:-1].strip()
else:
cleaned_text = raw_text.strip()
cleaned_text = html.unescape(cleaned_text)
cleaned_text = re.sub(r'</?\w+[^>]*>', '', cleaned_text)
cleaned_text = re.sub(r'["\n\r]*', '', cleaned_text)
index = -1
while -index < len(cleaned_text) and cleaned_text[index] == '.':
index -= 1
index += 1
if index == 0:
cleaned_text = cleaned_text + '.'
else:
cleaned_text = cleaned_text[:index] + '.'
if len(cleaned_text) >= 2000:
cleaned_text = ''
return cleaned_text
def load_pickle(filename):
with open(filename, "rb") as f:
return pickle.load(f)
def make_inters_in_order(inters):
user2inters, new_inters = collections.defaultdict(list), list()
for inter in inters:
user, item, rating, timestamp = inter
user2inters[user].append((user, item, rating, timestamp))
for user in user2inters:
user_inters = user2inters[user]
user_inters.sort(key=lambda d: d[3])
for inter in user_inters:
new_inters.append(inter)
return new_inters
def write_json_file(dic, file):
print('Writing json file: ',file)
with open(file, 'w') as fp:
json.dump(dic, fp, indent=4)
def write_remap_index(unit2index, file):
print('Writing remap file: ',file)
with open(file, 'w') as fp:
for unit in unit2index:
fp.write(unit + '\t' + str(unit2index[unit]) + '\n')
intention_prompt = "After purchasing a {dataset_full_name} item named \"{item_title}\", the user left a comment expressing his opinion and personal preferences. The user's comment is as follows: \n\"{review}\" " \
"\nAs we all know, user comments often contain information about both their personal preferences and the characteristics of the item they interacted with. From this comment, you can infer both the user's personal preferences and the characteristics of the item. " \
"Please describe your inferred user preferences and item characteristics in the first person and in the following format:\n\nMy preferences: []\nThe item's characteristics: []\n\n" \
"Note that your inference of the personalized preferences should not include any information about the title of the item."
preference_prompt_1 = "Suppose the user has bought a variety of {dataset_full_name} items, they are: \n{item_titles}. \nAs we all know, these historically purchased items serve as a reflection of the user's personalized preferences. " \
"Please analyze the user's personalized preferences based on the items he has bought and provide a brief third-person summary of the user's preferences, highlighting the key factors that influence his choice of items. Avoid listing specific items and do not list multiple examples. " \
"Your analysis should be brief and in the third person."
preference_prompt_2 = "Given a chronological list of {dataset_full_name} items that a user has purchased, we can analyze his long-term and short-term preferences. Long-term preferences are inherent characteristics of the user, which are reflected in all the items he has interacted with over time. Short-term preferences are the user's recent preferences, which are reflected in some of the items he has bought more recently. " \
"To determine the user's long-term preferences, please analyze the contents of all the items he has bought. Look for common features that appear frequently across the user's shopping records. To determine the user's short-term preferences, focus on the items he has bought most recently. Identify any new or different features that have emerged in the user's shopping records. " \
"Here is a chronological list of items that the user has bought: \n{item_titles}. \nPlease provide separate analyses for the user's long-term and short-term preferences. Your answer should be concise and general, without listing specific items. Your answer should be in the third person and in the following format:\n\nLong-term preferences: []\nShort-term preferences: []\n\n"
# remove 'Magazine', 'Gift', 'Music', 'Kindle'
amazon18_dataset_list = [
'Appliances', 'Beauty',
'Fashion', 'Software', 'Luxury', 'Scientific', 'Pantry',
'Instruments', 'Arts', 'Games', 'Office', 'Garden',
'Food', 'Cell', 'CDs', 'Automotive', 'Toys',
'Pet', 'Tools', 'Kindle', 'Sports', 'Movies',
'Electronics', 'Home', 'Clothing', 'Books'
]
amazon18_dataset2fullname = {
'Beauty': 'All_Beauty',
'Fashion': 'AMAZON_FASHION',
'Appliances': 'Appliances',
'Arts': 'Arts_Crafts_and_Sewing',
'Automotive': 'Automotive',
'Books': 'Books',
'CDs': 'CDs_and_Vinyl',
'Cell': 'Cell_Phones_and_Accessories',
'Clothing': 'Clothing_Shoes_and_Jewelry',
'Music': 'Digital_Music',
'Electronics': 'Electronics',
'Gift': 'Gift_Cards',
'Food': 'Grocery_and_Gourmet_Food',
'Home': 'Home_and_Kitchen',
'Scientific': 'Industrial_and_Scientific',
'Kindle': 'Kindle_Store',
'Luxury': 'Luxury_Beauty',
'Magazine': 'Magazine_Subscriptions',
'Movies': 'Movies_and_TV',
'Instruments': 'Musical_Instruments',
'Office': 'Office_Products',
'Garden': 'Patio_Lawn_and_Garden',
'Pet': 'Pet_Supplies',
'Pantry': 'Prime_Pantry',
'Software': 'Software',
'Sports': 'Sports_and_Outdoors',
'Tools': 'Tools_and_Home_Improvement',
'Toys': 'Toys_and_Games',
'Games': 'Video_Games'
}
amazon14_dataset_list = [
'Beauty','Toys','Sports'
]
amazon14_dataset2fullname = {
'Beauty': 'Beauty',
'Sports': 'Sports_and_Outdoors',
'Toys': 'Toys_and_Games',
}
# c1. c2. c3. c4.
amazon_text_feature1 = ['title', 'category', 'brand']
# re-order
amazon_text_feature1_ro1 = ['brand', 'main_cat', 'category', 'title']
# remove
amazon_text_feature1_re1 = ['title']
amazon_text_feature2 = ['title']
amazon_text_feature3 = ['description']
amazon_text_feature4 = ['description', 'main_cat', 'category', 'brand']
amazon_text_feature5 = ['title', 'description']
|