File size: 7,940 Bytes
8a506a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
import argparse
import collections
import gzip
import html
import json
import os
import random
import re
import torch
from tqdm import tqdm
import numpy as np
from utils import check_path, clean_text, amazon18_dataset2fullname,write_json_file,write_remap_index
def load_ratings(file):
users, items, inters = set(), set(), set()
with open(file, 'r') as fp:
for line in tqdm(fp, desc='Load ratings'):
try:
item, user, rating, time = line.strip().split(',')
users.add(user)
items.add(item)
inters.add((user, item, float(rating), int(time)))
except ValueError:
print(line)
return users, items, inters
def load_meta_items(file):
items = {}
# re_tag = re.compile('</?\w+[^>]*>')
with gzip.open(file, "r") as fp:
for line in tqdm(fp, desc="Load metas"):
data = json.loads(line)
item = data["asin"]
title = clean_text(data["title"])
descriptions = data["description"]
descriptions = clean_text(descriptions)
# new_descriptions = []
# for description in descriptions:
# description = re.sub(re_tag, '', description)
# new_descriptions.append(description.strip())
# descriptions = " ".join(new_descriptions).strip()
brand = data["brand"].replace("by\n", "").strip()
categories = data["category"]
new_categories = []
for category in categories:
if "</span>" in category:
break
new_categories.append(category.strip())
categories = ",".join(new_categories[1:]).strip()
items[item] = {"title": title, "description": descriptions, "brand": brand, "categories": categories}
# print(items[item])
return items
def get_user2count(inters):
user2count = collections.defaultdict(int)
for unit in inters:
user2count[unit[0]] += 1
return user2count
def get_item2count(inters):
item2count = collections.defaultdict(int)
for unit in inters:
item2count[unit[1]] += 1
return item2count
def generate_candidates(unit2count, threshold):
cans = set()
for unit, count in unit2count.items():
if count >= threshold:
cans.add(unit)
return cans, len(unit2count) - len(cans)
def filter_inters(inters, can_items=None,
user_k_core_threshold=0, item_k_core_threshold=0):
new_inters = []
# filter by meta items
if can_items:
print('\nFiltering by meta items: ')
for unit in inters:
if unit[1] in can_items.keys():
new_inters.append(unit)
inters, new_inters = new_inters, []
print(' The number of inters: ', len(inters))
# filter by k-core
if user_k_core_threshold or item_k_core_threshold:
print('\nFiltering by k-core:')
idx = 0
user2count = get_user2count(inters)
item2count = get_item2count(inters)
while True:
new_user2count = collections.defaultdict(int)
new_item2count = collections.defaultdict(int)
users, n_filtered_users = generate_candidates( # users is set
user2count, user_k_core_threshold)
items, n_filtered_items = generate_candidates(
item2count, item_k_core_threshold)
if n_filtered_users == 0 and n_filtered_items == 0:
break
for unit in inters:
if unit[0] in users and unit[1] in items:
new_inters.append(unit)
new_user2count[unit[0]] += 1
new_item2count[unit[1]] += 1
idx += 1
inters, new_inters = new_inters, []
user2count, item2count = new_user2count, new_item2count
print(' Epoch %d The number of inters: %d, users: %d, items: %d'
% (idx, len(inters), len(user2count), len(item2count)))
return inters
def make_inters_in_order(inters):
user2inters, new_inters = collections.defaultdict(list), list()
for inter in inters:
user, item, rating, timestamp = inter
user2inters[user].append((user, item, rating, timestamp))
for user in user2inters:
user_inters = user2inters[user]
user_inters.sort(key=lambda d: d[3])
interacted_item = set()
for inter in user_inters:
if inter[1] in interacted_item: # 过滤重复交互
continue
interacted_item.add(inter[1])
new_inters.append(inter)
return new_inters
def preprocess_rating(args):
dataset_full_name = amazon18_dataset2fullname[args.dataset]
print('Process rating data: ')
print(' Dataset: ', args.dataset)
# load ratings
rating_file_path = os.path.join(args.input_path, 'Ratings', dataset_full_name + '.csv')
rating_users, rating_items, rating_inters = load_ratings(rating_file_path)
# load item IDs with meta data
meta_file_path = os.path.join(args.input_path, 'Metadata', f'meta_{dataset_full_name}.json.gz')
meta_items = load_meta_items(meta_file_path)
# 1. Filter items w/o meta data;
# 2. K-core filtering;
print('The number of raw inters: ', len(rating_inters))
rating_inters = make_inters_in_order(rating_inters)
rating_inters = filter_inters(rating_inters, can_items=meta_items,
user_k_core_threshold=args.user_k,
item_k_core_threshold=args.item_k)
# sort interactions chronologically for each user
rating_inters = make_inters_in_order(rating_inters)
print('\n')
# return: list of (user_ID, item_ID, rating, timestamp)
return rating_inters, meta_items
def save_inter(args, inters):
print('Convert dataset: ')
print(' Dataset: ', args.dataset)
with open(os.path.join(args.output_path, args.dataset, f'{args.dataset}.inter'), 'w') as file:
file.write('user_id:token\titem_id:token\trating:float\ttimestamp:float\n')
for inter in inters:
user, item, rating, timestamp = inter
file.write(f'{user}\t{item}\t{rating}\t{timestamp}\n')
def save_feat(args, feat, all_items):
iid_list = list(feat.keys())
num_item = 0
with open(os.path.join(args.output_path, args.dataset, f'{args.dataset}.item'), 'w') as file:
# "title": title, "description": descriptions, "brand": brand, "categories": categories
file.write('item_id:token\ttitle:token_seq\tbrand:token\tcategories:token_seq\n')
for iid in iid_list:
if iid in all_items:
num_item += 1
title, brand, categories = feat[iid]["title"], feat[iid]["brand"], feat[iid]["categories"]
file.write(f'{iid}\t{title}\t{brand}\t{categories}\n')
print("num_item: ", num_item)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default='Arts', help='Instruments / Arts / Games')
parser.add_argument('--user_k', type=int, default=5, help='user k-core filtering')
parser.add_argument('--item_k', type=int, default=5, help='item k-core filtering')
parser.add_argument('--input_path', type=str, default='')
parser.add_argument('--output_path', type=str, default='')
return parser.parse_args()
if __name__ == '__main__':
args = parse_args()
# load interactions from raw rating file
rating_inters, meta_items = preprocess_rating(args)
check_path(os.path.join(args.output_path, args.dataset))
all_items = set()
for inter in rating_inters:
user, item, rating, timestamp = inter
all_items.add(item)
print("total item: ", len(list(all_items)))
save_inter(args,rating_inters)
save_feat(args,meta_items, all_items)
|