File size: 7,940 Bytes
8a506a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import argparse
import collections
import gzip
import html
import json
import os
import random
import re
import torch
from tqdm import tqdm
import numpy as np
from utils import check_path, clean_text, amazon18_dataset2fullname,write_json_file,write_remap_index

def load_ratings(file):
    users, items, inters = set(), set(), set()
    with open(file, 'r') as fp:
        for line in tqdm(fp, desc='Load ratings'):
            try:
                item, user, rating, time = line.strip().split(',')
                users.add(user)
                items.add(item)
                inters.add((user, item, float(rating), int(time)))
            except ValueError:
                print(line)
    return users, items, inters


def load_meta_items(file):
    items = {}
    # re_tag = re.compile('</?\w+[^>]*>')
    with gzip.open(file, "r") as fp:
        for line in tqdm(fp, desc="Load metas"):
            data = json.loads(line)
            item = data["asin"]
            title = clean_text(data["title"])

            descriptions = data["description"]
            descriptions = clean_text(descriptions)
            # new_descriptions = []
            # for description in descriptions:
            #     description = re.sub(re_tag, '', description)
            #     new_descriptions.append(description.strip())
            # descriptions = " ".join(new_descriptions).strip()

            brand = data["brand"].replace("by\n", "").strip()

            categories = data["category"]
            new_categories = []
            for category in categories:
                if "</span>" in category:
                    break
                new_categories.append(category.strip())
            categories = ",".join(new_categories[1:]).strip()

            items[item] = {"title": title, "description": descriptions, "brand": brand, "categories": categories}
            # print(items[item])
    return items


def get_user2count(inters):
    user2count = collections.defaultdict(int)
    for unit in inters:
        user2count[unit[0]] += 1
    return user2count


def get_item2count(inters):
    item2count = collections.defaultdict(int)
    for unit in inters:
        item2count[unit[1]] += 1
    return item2count


def generate_candidates(unit2count, threshold):
    cans = set()
    for unit, count in unit2count.items():
        if count >= threshold:
            cans.add(unit)
    return cans, len(unit2count) - len(cans)


def filter_inters(inters, can_items=None,
                  user_k_core_threshold=0, item_k_core_threshold=0):
    new_inters = []

    # filter by meta items
    if can_items:
        print('\nFiltering by meta items: ')
        for unit in inters:
            if unit[1] in can_items.keys():
                new_inters.append(unit)
        inters, new_inters = new_inters, []
        print('    The number of inters: ', len(inters))

    # filter by k-core
    if user_k_core_threshold or item_k_core_threshold:
        print('\nFiltering by k-core:')
        idx = 0
        user2count = get_user2count(inters)
        item2count = get_item2count(inters)

        while True:
            new_user2count = collections.defaultdict(int)
            new_item2count = collections.defaultdict(int)
            users, n_filtered_users = generate_candidates( # users is set
                user2count, user_k_core_threshold)
            items, n_filtered_items = generate_candidates(
                item2count, item_k_core_threshold)
            if n_filtered_users == 0 and n_filtered_items == 0:
                break
            for unit in inters:
                if unit[0] in users and unit[1] in items:
                    new_inters.append(unit)
                    new_user2count[unit[0]] += 1
                    new_item2count[unit[1]] += 1
            idx += 1
            inters, new_inters = new_inters, []
            user2count, item2count = new_user2count, new_item2count
            print('    Epoch %d The number of inters: %d, users: %d, items: %d'
                    % (idx, len(inters), len(user2count), len(item2count)))
    return inters


def make_inters_in_order(inters):
    user2inters, new_inters = collections.defaultdict(list), list()
    for inter in inters:
        user, item, rating, timestamp = inter
        user2inters[user].append((user, item, rating, timestamp))
    for user in user2inters:
        user_inters = user2inters[user]
        user_inters.sort(key=lambda d: d[3])
        interacted_item = set()
        for inter in user_inters:
            if inter[1] in interacted_item: # 过滤重复交互
                continue
            interacted_item.add(inter[1])
            new_inters.append(inter)
    return new_inters


def preprocess_rating(args):
    dataset_full_name = amazon18_dataset2fullname[args.dataset]

    print('Process rating data: ')
    print(' Dataset: ', args.dataset)

    # load ratings
    rating_file_path = os.path.join(args.input_path, 'Ratings', dataset_full_name + '.csv')
    rating_users, rating_items, rating_inters = load_ratings(rating_file_path)

    # load item IDs with meta data
    meta_file_path = os.path.join(args.input_path, 'Metadata', f'meta_{dataset_full_name}.json.gz')
    meta_items = load_meta_items(meta_file_path)

    # 1. Filter items w/o meta data;
    # 2. K-core filtering;
    print('The number of raw inters: ', len(rating_inters))

    rating_inters = make_inters_in_order(rating_inters)

    rating_inters = filter_inters(rating_inters, can_items=meta_items,
                                  user_k_core_threshold=args.user_k,
                                  item_k_core_threshold=args.item_k)

    # sort interactions chronologically for each user
    rating_inters = make_inters_in_order(rating_inters)
    print('\n')

    # return: list of (user_ID, item_ID, rating, timestamp)
    return rating_inters, meta_items

def save_inter(args, inters):
    print('Convert dataset: ')
    print(' Dataset: ', args.dataset)

    with open(os.path.join(args.output_path, args.dataset, f'{args.dataset}.inter'), 'w') as file:
        file.write('user_id:token\titem_id:token\trating:float\ttimestamp:float\n')
        for inter in inters:
            user, item, rating, timestamp = inter
            file.write(f'{user}\t{item}\t{rating}\t{timestamp}\n')


def save_feat(args, feat, all_items):
    iid_list = list(feat.keys())
    num_item = 0
    with open(os.path.join(args.output_path, args.dataset, f'{args.dataset}.item'), 'w') as file:
        # "title": title, "description": descriptions, "brand": brand, "categories": categories
        file.write('item_id:token\ttitle:token_seq\tbrand:token\tcategories:token_seq\n')
        for iid in iid_list:
            if iid in all_items:
                num_item += 1
                title, brand, categories = feat[iid]["title"], feat[iid]["brand"], feat[iid]["categories"]
                file.write(f'{iid}\t{title}\t{brand}\t{categories}\n')
    print("num_item: ", num_item)


def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument('--dataset', type=str, default='Arts', help='Instruments / Arts / Games')
    parser.add_argument('--user_k', type=int, default=5, help='user k-core filtering')
    parser.add_argument('--item_k', type=int, default=5, help='item k-core filtering')
    parser.add_argument('--input_path', type=str, default='')
    parser.add_argument('--output_path', type=str, default='')
    return parser.parse_args()


if __name__ == '__main__':
    args = parse_args()

    # load interactions from raw rating file
    rating_inters, meta_items = preprocess_rating(args)

    check_path(os.path.join(args.output_path, args.dataset))


    all_items = set()
    for inter in rating_inters:
        user, item, rating, timestamp = inter
        all_items.add(item)

    print("total item: ", len(list(all_items)))

    save_inter(args,rating_inters)
    save_feat(args,meta_items, all_items)