File size: 7,335 Bytes
fcd5579
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import types
import numpy as np
from core.interact import interact as io
from core.leras import nn
tf = nn.tf

class ModelBase(nn.Saveable):
    def __init__(self, *args, name=None, **kwargs):
        super().__init__(name=name)
        self.layers = []
        self.layers_by_name = {}
        self.built = False
        self.args = args
        self.kwargs = kwargs
        self.run_placeholders = None

    def _build_sub(self, layer, name):
        if isinstance (layer, list):
            for i,sublayer in enumerate(layer):
                self._build_sub(sublayer, f"{name}_{i}")
        elif isinstance (layer, dict):
            for subname in layer.keys():
                sublayer = layer[subname]
                self._build_sub(sublayer, f"{name}_{subname}")
        elif isinstance (layer, nn.LayerBase) or \
                isinstance (layer, ModelBase):

            if layer.name is None:
                layer.name = name

            if isinstance (layer, nn.LayerBase):
                with tf.variable_scope(layer.name):
                    layer.build_weights()
            elif isinstance (layer, ModelBase):
                layer.build()

            self.layers.append (layer)
            self.layers_by_name[layer.name] = layer

    def xor_list(self, lst1, lst2):
        return  [value for value in lst1+lst2 if (value not in lst1) or (value not in lst2)  ]

    def build(self):
        with tf.variable_scope(self.name):

            current_vars = []
            generator = None
            while True:

                if generator is None:
                    generator = self.on_build(*self.args, **self.kwargs)
                    if not isinstance(generator, types.GeneratorType):
                        generator = None

                if generator is not None:
                    try:
                        next(generator)
                    except StopIteration:
                        generator = None

                v = vars(self)
                new_vars = self.xor_list (current_vars, list(v.keys()) )

                for name in new_vars:
                    self._build_sub(v[name],name)

                current_vars += new_vars

                if generator is None:
                    break

        self.built = True

    #override
    def get_weights(self):
        if not self.built:
            self.build()

        weights = []
        for layer in self.layers:
            weights += layer.get_weights()
        return weights

    def get_layer_by_name(self, name):
        return self.layers_by_name.get(name, None)

    def get_layers(self):
        if not self.built:
            self.build()
        layers = []
        for layer in self.layers:
            if isinstance (layer, nn.LayerBase):
                layers.append(layer)
            else:
                layers += layer.get_layers()
        return layers

    #override
    def on_build(self, *args, **kwargs):
        """
        init model layers here

        return 'yield' if build is not finished
                    therefore dependency models will be initialized
        """
        pass

    #override
    def forward(self, *args, **kwargs):
        #flow layers/models/tensors here
        pass

    def __call__(self, *args, **kwargs):
        if not self.built:
            self.build()

        return self.forward(*args, **kwargs)

    # def compute_output_shape(self, shapes):
    #     if not self.built:
    #         self.build()

    #     not_list = False
    #     if not isinstance(shapes, list):
    #         not_list = True
    #         shapes = [shapes]

    #     with tf.device('/CPU:0'):
    #         # CPU tensors will not impact any performance, only slightly RAM "leakage"
    #         phs = []
    #         for dtype,sh in shapes:
    #             phs += [ tf.placeholder(dtype, sh) ]

    #         result = self.__call__(phs[0] if not_list else phs)

    #         if not isinstance(result, list):
    #             result = [result]

    #         result_shapes = []

    #         for t in result:
    #             result_shapes += [ t.shape.as_list() ]

    #         return result_shapes[0] if not_list else result_shapes

    def build_for_run(self, shapes_list):
        if not isinstance(shapes_list, list):
            raise ValueError("shapes_list must be a list.")

        self.run_placeholders = []
        for dtype,sh in shapes_list:
            self.run_placeholders.append ( tf.placeholder(dtype, sh) )

        self.run_output = self.__call__(self.run_placeholders)

    def run (self, inputs):
        if self.run_placeholders is None:
            raise Exception ("Model didn't build for run.")

        if len(inputs) != len(self.run_placeholders):
            raise ValueError("len(inputs) != self.run_placeholders")

        feed_dict = {}
        for ph, inp in zip(self.run_placeholders, inputs):
            feed_dict[ph] = inp

        return nn.tf_sess.run ( self.run_output, feed_dict=feed_dict)

    def summary(self):
        layers = self.get_layers()
        layers_names = []
        layers_params = []

        max_len_str = 0
        max_len_param_str = 0
        delim_str = "-"

        total_params = 0

        #Get layers names and str lenght for delim
        for l in layers:
            if len(str(l))>max_len_str:
                max_len_str = len(str(l))
            layers_names+=[str(l).capitalize()]

        #Get params for each layer
        layers_params = [ int(np.sum(np.prod(w.shape) for w in l.get_weights())) for l in layers ]
        total_params = np.sum(layers_params)

        #Get str lenght for delim
        for p in layers_params:
            if len(str(p))>max_len_param_str:
                max_len_param_str=len(str(p))

        #Set delim
        for i in range(max_len_str+max_len_param_str+3):
            delim_str += "-"

        output = "\n"+delim_str+"\n"

        #Format model name str
        model_name_str = "| "+self.name.capitalize()
        len_model_name_str = len(model_name_str)
        for i in range(len(delim_str)-len_model_name_str):
            model_name_str+= " " if i!=(len(delim_str)-len_model_name_str-2) else " |"

        output += model_name_str +"\n"
        output += delim_str +"\n"


        #Format layers table
        for i in range(len(layers_names)):
            output += delim_str +"\n"

            l_name = layers_names[i]
            l_param = str(layers_params[i])
            l_param_str = ""
            if len(l_name)<=max_len_str:
                for i in range(max_len_str - len(l_name)):
                    l_name+= " "

            if len(l_param)<=max_len_param_str:
                for i in range(max_len_param_str - len(l_param)):
                    l_param_str+= " "

            l_param_str += l_param


            output +="| "+l_name+"|"+l_param_str+"| \n"

        output += delim_str +"\n"

        #Format sum of params
        total_params_str = "| Total params count: "+str(total_params)
        len_total_params_str = len(total_params_str)
        for i in range(len(delim_str)-len_total_params_str):
            total_params_str+= " " if i!=(len(delim_str)-len_total_params_str-2) else " |"

        output += total_params_str +"\n"
        output += delim_str +"\n"

        io.log_info(output)

nn.ModelBase = ModelBase