File size: 1,339 Bytes
40ffc7e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
---
language:
- ta
metrics:
- wer
library_name: transformers
pipeline_tag: automatic-speech-recognition
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
This is the fine-tuned version of whisper-large-v2 model for Tamil language.
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <training_args = Seq2SeqTrainingArguments(
output_dir="./pretrainedwhisper-medium-native-v2", # change to a repo name of your choice
per_device_train_batch_size=4,
gradient_accumulation_steps=1, # increase by 2x for every 2x decrease in batch size
learning_rate=1e-5,
warmup_steps=200,
max_steps=2000,
gradient_checkpointing=True,
fp16=True,
evaluation_strategy="steps",
per_device_eval_batch_size=8,
predict_with_generate=True,
generation_max_length=225,
save_steps=500,
eval_steps=500,
logging_steps=25,
report_to=["tensorboard"],
load_best_model_at_end=True,
metric_for_best_model="wer",
greater_is_better=False,
push_to_hub=True,
optim="adamw_bnb_8bit"
)>
### Model Architecture and Objective
The model follows the whisper architecture with the encoder-decoder part. Where the encoder used to create the embeddings from the speech input and the decoder used to give the textual outputs.
|