File size: 6,054 Bytes
aa8f6da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d88d405
 
 
 
 
 
 
 
 
 
 
 
 
aa8f6da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d88d405
 
aa8f6da
 
 
d88d405
aa8f6da
 
 
d88d405
 
 
 
 
 
 
aa8f6da
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
license: cc-by-nc-sa-4.0
tags:
- generated_from_trainer
model-index:
- name: layoutlmv3-base-ner
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# layoutlmv3-base-ner

This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4071
- Footer: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 186}
- Header: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 373}
- Able: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 100}
- Aption: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 148}
- Ext: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 566}
- Icture: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 270}
- Itle: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 45}
- Ootnote: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8}
- Overall Precision: 0.0
- Overall Recall: 0.0
- Overall F1: 0.0
- Overall Accuracy: 0.6399

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Footer                                                      | Header                                                      | Able                                                        | Aption                                                      | Ext                                                         | Icture                                                      | Itle                                                       | Ootnote                                                   | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:-----------------------------------------------------------:|:-----------------------------------------------------------:|:-----------------------------------------------------------:|:-----------------------------------------------------------:|:-----------------------------------------------------------:|:-----------------------------------------------------------:|:----------------------------------------------------------:|:---------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 1.1724        | 1.0   | 1950 | 1.4537          | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 186} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 373} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 100} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 148} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 566} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 270} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 45} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} | 0.0               | 0.0            | 0.0        | 0.6399           |
| 1.2004        | 2.0   | 3900 | 1.4094          | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 186} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 373} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 100} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 148} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 566} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 270} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 45} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} | 0.0               | 0.0            | 0.0        | 0.6399           |
| 1.2026        | 3.0   | 5850 | 1.4038          | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 186} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 373} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 100} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 148} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 566} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 270} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 45} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} | 0.0               | 0.0            | 0.0        | 0.6399           |
| 1.2107        | 4.0   | 7800 | 1.4217          | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 186} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 373} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 100} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 148} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 566} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 270} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 45} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} | 0.0               | 0.0            | 0.0        | 0.6399           |
| 1.1836        | 5.0   | 9750 | 1.4071          | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 186} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 373} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 100} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 148} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 566} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 270} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 45} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 8} | 0.0               | 0.0            | 0.0        | 0.6399           |


### Framework versions

- Transformers 4.26.0
- Pytorch 1.12.1
- Datasets 2.9.0
- Tokenizers 0.13.2