File size: 1,191 Bytes
8171e62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
import torch
import torch.distributed.tensor  # Add this import for DTensor support
import fire
from glob import glob
from collections import defaultdict


def main(fsdp_checkpoint_path, huggingface_model_path, output_path):
    state_dict = defaultdict(list)

    world_size = 8
    for rank in range(world_size):
        filepath = f"{fsdp_checkpoint_path}/model_world_size_{world_size}_rank_{rank}.pt"
        print('loading', filepath)
        # Set weights_only=False to handle DTensors properly
        this_state_dict = torch.load(filepath, weights_only=False)
        for key, value in this_state_dict.items():
            state_dict[key].append(value.to_local())

    for key in state_dict:
        state_dict[key] = torch.cat(state_dict[key], dim=0)

    config = AutoConfig.from_pretrained(huggingface_model_path)
    model = AutoModelForCausalLM.from_config(config)
    model.load_state_dict(state_dict)

    model.save_pretrained(output_path)

    tokenizer = AutoTokenizer.from_pretrained(huggingface_model_path)
    tokenizer.save_pretrained(output_path)


if __name__ == "__main__":
    fire.Fire(main)