JEdward7777's picture
update model card README.md
2c72db4
|
raw
history blame
4.2 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: delivery_truck_classification
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 1

delivery_truck_classification

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2027
  • Accuracy: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 1 1.6169 0.4286
No log 2.0 2 1.5622 0.5
No log 3.0 3 1.4656 0.5714
No log 4.0 4 1.3434 0.7143
No log 5.0 5 1.1958 0.8571
No log 6.0 6 1.0398 0.8571
No log 7.0 7 0.8839 0.8571
No log 8.0 8 0.7458 0.8571
No log 9.0 9 0.6267 0.8571
No log 10.0 10 0.5253 0.8571
No log 11.0 11 0.4414 0.8571
No log 12.0 12 0.3764 0.8571
No log 13.0 13 0.3250 0.8571
No log 14.0 14 0.2810 0.8571
No log 15.0 15 0.2406 0.9286
No log 16.0 16 0.2027 1.0
No log 17.0 17 0.1679 1.0
No log 18.0 18 0.1376 1.0
No log 19.0 19 0.1119 1.0
1.0444 20.0 20 0.0910 1.0
1.0444 21.0 21 0.0734 1.0
1.0444 22.0 22 0.0616 1.0
1.0444 23.0 23 0.0536 1.0
1.0444 24.0 24 0.0478 1.0
1.0444 25.0 25 0.0437 1.0
1.0444 26.0 26 0.0414 1.0
1.0444 27.0 27 0.0376 1.0
1.0444 28.0 28 0.0342 1.0
1.0444 29.0 29 0.0313 1.0
1.0444 30.0 30 0.0287 1.0
1.0444 31.0 31 0.0274 1.0
1.0444 32.0 32 0.0267 1.0
1.0444 33.0 33 0.0263 1.0
1.0444 34.0 34 0.0260 1.0
1.0444 35.0 35 0.0258 1.0
1.0444 36.0 36 0.0255 1.0
1.0444 37.0 37 0.0249 1.0
1.0444 38.0 38 0.0246 1.0
1.0444 39.0 39 0.0243 1.0
0.3497 40.0 40 0.0240 1.0

Framework versions

  • Transformers 4.21.2
  • Pytorch 1.12.1+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1