File size: 1,537 Bytes
a518cb6
45bcfdf
 
a518cb6
 
 
45bcfdf
a518cb6
 
45bcfdf
a518cb6
45bcfdf
a518cb6
 
 
 
 
 
45bcfdf
a518cb6
45bcfdf
59e9210
751f10d
a518cb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
751f10d
 
a518cb6
 
751f10d
a518cb6
 
751f10d
a518cb6
 
59e9210
 
9c7d2e2
 
751f10d
59e9210
 
a518cb6
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
language:
- en
license: mit
base_model: microsoft/speecht5_tts
tags:
- en_accent,mozilla,t5,common_voice_1_0
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_1_0
model-index:
- name: SpeechT5 TTS English Accented
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# SpeechT5 TTS English Accented

This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the Common Voice dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7290

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 100
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.7528        | 0.8   | 100  | 0.7290          |


### Framework versions

- Transformers 4.36.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1