File size: 2,993 Bytes
d922c6c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
---
library_name: transformers
license: apache-2.0
base_model: Alibaba-NLP/gte-large-en-v1.5
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: gte-large-en-v1.5-based-ft-prompt-injection-detection-241205Weighted-71
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gte-large-en-v1.5-based-ft-prompt-injection-detection-241205Weighted-71
This model is a fine-tuned version of [Alibaba-NLP/gte-large-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1854
- F1: 0.9373
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 0.4424 | 0.2527 | 100 | 0.2132 | 0.9171 |
| 0.196 | 0.5054 | 200 | 0.1630 | 0.9390 |
| 0.157 | 0.7581 | 300 | 0.1354 | 0.9455 |
| 0.1504 | 1.0107 | 400 | 0.1332 | 0.9526 |
| 0.1062 | 1.2634 | 500 | 0.1283 | 0.9530 |
| 0.1089 | 1.5161 | 600 | 0.1226 | 0.9571 |
| 0.1171 | 1.7688 | 700 | 0.1329 | 0.9537 |
| 0.1136 | 2.0215 | 800 | 0.1429 | 0.9550 |
| 0.0799 | 2.2742 | 900 | 0.1543 | 0.9501 |
| 0.0929 | 2.5268 | 1000 | 0.1456 | 0.9488 |
| 0.0915 | 2.7795 | 1100 | 0.1518 | 0.9499 |
| 0.1065 | 3.0322 | 1200 | 0.1714 | 0.9471 |
| 0.067 | 3.2849 | 1300 | 0.1334 | 0.9582 |
| 0.0702 | 3.5376 | 1400 | 0.1472 | 0.9508 |
| 0.0714 | 3.7903 | 1500 | 0.1852 | 0.9495 |
| 0.0698 | 4.0430 | 1600 | 0.2459 | 0.9453 |
| 0.0518 | 4.2956 | 1700 | 0.2273 | 0.9477 |
| 0.0565 | 4.5483 | 1800 | 0.1717 | 0.9527 |
| 0.0543 | 4.8010 | 1900 | 0.1749 | 0.9538 |
| 0.0516 | 5.0537 | 2000 | 0.1736 | 0.9545 |
| 0.0395 | 5.3064 | 2100 | 0.2381 | 0.9469 |
| 0.0447 | 5.5591 | 2200 | 0.2138 | 0.9444 |
| 0.0515 | 5.8117 | 2300 | 0.1854 | 0.9373 |
### Framework versions
- Transformers 4.45.2
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
|