|
---
|
|
library_name: transformers
|
|
tags:
|
|
- generated_from_trainer
|
|
datasets:
|
|
- imagefolder
|
|
metrics:
|
|
- accuracy
|
|
- precision
|
|
- recall
|
|
- f1
|
|
model-index:
|
|
- name: vit-finetune-kidney-stone-Jonathan_El-Beze_-w256_1k_v1-_SUR
|
|
results:
|
|
- task:
|
|
name: Image Classification
|
|
type: image-classification
|
|
dataset:
|
|
name: imagefolder
|
|
type: imagefolder
|
|
config: default
|
|
split: test
|
|
args: default
|
|
metrics:
|
|
- name: Accuracy
|
|
type: accuracy
|
|
value: 0.8916666666666667
|
|
- name: Precision
|
|
type: precision
|
|
value: 0.8912400695750242
|
|
- name: Recall
|
|
type: recall
|
|
value: 0.8916666666666667
|
|
- name: F1
|
|
type: f1
|
|
value: 0.8897432083705339
|
|
---
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
should probably proofread and complete it, then remove this comment. -->
|
|
|
|
# vit-finetune-kidney-stone-Jonathan_El-Beze_-w256_1k_v1-_SUR
|
|
|
|
This model was trained from scratch on the imagefolder dataset.
|
|
It achieves the following results on the evaluation set:
|
|
- Loss: 0.3726
|
|
- Accuracy: 0.8917
|
|
- Precision: 0.8912
|
|
- Recall: 0.8917
|
|
- F1: 0.8897
|
|
|
|
## Model description
|
|
|
|
More information needed
|
|
|
|
## Intended uses & limitations
|
|
|
|
More information needed
|
|
|
|
## Training and evaluation data
|
|
|
|
More information needed
|
|
|
|
## Training procedure
|
|
|
|
### Training hyperparameters
|
|
|
|
The following hyperparameters were used during training:
|
|
- learning_rate: 0.0002
|
|
- train_batch_size: 32
|
|
- eval_batch_size: 8
|
|
- seed: 42
|
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
|
- lr_scheduler_type: linear
|
|
- num_epochs: 1
|
|
- mixed_precision_training: Native AMP
|
|
|
|
### Training results
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
|
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
|
| 0.0863 | 0.6667 | 100 | 0.3726 | 0.8917 | 0.8912 | 0.8917 | 0.8897 |
|
|
|
|
|
|
### Framework versions
|
|
|
|
- Transformers 4.48.2
|
|
- Pytorch 2.6.0+cu126
|
|
- Datasets 3.2.0
|
|
- Tokenizers 0.21.0
|
|
|