File size: 51,816 Bytes
3a0c27d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
[2023-04-27 22:28:30,298][19320] Saving configuration to /home/byron/projects/rl-learning-course/unit-08/train_dir/default_experiment/config.json...
[2023-04-27 22:28:30,299][19320] Rollout worker 0 uses device cpu
[2023-04-27 22:28:30,300][19320] Rollout worker 1 uses device cpu
[2023-04-27 22:28:30,300][19320] Rollout worker 2 uses device cpu
[2023-04-27 22:28:30,302][19320] Rollout worker 3 uses device cpu
[2023-04-27 22:28:30,302][19320] Rollout worker 4 uses device cpu
[2023-04-27 22:28:30,303][19320] Rollout worker 5 uses device cpu
[2023-04-27 22:28:30,304][19320] Rollout worker 6 uses device cpu
[2023-04-27 22:28:30,304][19320] Rollout worker 7 uses device cpu
[2023-04-27 22:28:30,345][19320] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2023-04-27 22:28:30,345][19320] InferenceWorker_p0-w0: min num requests: 2
[2023-04-27 22:28:30,363][19320] Starting all processes...
[2023-04-27 22:28:30,364][19320] Starting process learner_proc0
[2023-04-27 22:28:30,489][19320] Starting all processes...
[2023-04-27 22:28:30,494][19320] Starting process inference_proc0-0
[2023-04-27 22:28:30,494][19320] Starting process rollout_proc0
[2023-04-27 22:28:30,495][19320] Starting process rollout_proc1
[2023-04-27 22:28:30,495][19320] Starting process rollout_proc2
[2023-04-27 22:28:30,496][19320] Starting process rollout_proc3
[2023-04-27 22:28:30,496][19320] Starting process rollout_proc4
[2023-04-27 22:28:30,496][19320] Starting process rollout_proc5
[2023-04-27 22:28:30,497][19320] Starting process rollout_proc6
[2023-04-27 22:28:30,497][19320] Starting process rollout_proc7
[2023-04-27 22:28:31,380][26612] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2023-04-27 22:28:31,380][26612] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0
[2023-04-27 22:28:31,403][26612] Num visible devices: 1
[2023-04-27 22:28:31,424][26630] Worker 3 uses CPU cores [9, 10, 11]
[2023-04-27 22:28:31,427][26612] Starting seed is not provided
[2023-04-27 22:28:31,427][26612] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2023-04-27 22:28:31,427][26612] Initializing actor-critic model on device cuda:0
[2023-04-27 22:28:31,427][26612] RunningMeanStd input shape: (3, 72, 128)
[2023-04-27 22:28:31,428][26612] RunningMeanStd input shape: (1,)
[2023-04-27 22:28:31,430][26629] Worker 2 uses CPU cores [6, 7, 8]
[2023-04-27 22:28:31,434][26628] Worker 1 uses CPU cores [3, 4, 5]
[2023-04-27 22:28:31,439][26612] ConvEncoder: input_channels=3
[2023-04-27 22:28:31,444][26638] Worker 7 uses CPU cores [21, 22, 23]
[2023-04-27 22:28:31,455][26626] Worker 0 uses CPU cores [0, 1, 2]
[2023-04-27 22:28:31,457][26632] Worker 5 uses CPU cores [15, 16, 17]
[2023-04-27 22:28:31,467][26631] Worker 4 uses CPU cores [12, 13, 14]
[2023-04-27 22:28:31,474][26627] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2023-04-27 22:28:31,474][26627] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for inference process 0
[2023-04-27 22:28:31,481][26657] Worker 6 uses CPU cores [18, 19, 20]
[2023-04-27 22:28:31,507][26627] Num visible devices: 1
[2023-04-27 22:28:31,580][26612] Conv encoder output size: 512
[2023-04-27 22:28:31,581][26612] Policy head output size: 512
[2023-04-27 22:28:31,603][26612] Created Actor Critic model with architecture:
[2023-04-27 22:28:31,603][26612] ActorCriticSharedWeights(
  (obs_normalizer): ObservationNormalizer(
    (running_mean_std): RunningMeanStdDictInPlace(
      (running_mean_std): ModuleDict(
        (obs): RunningMeanStdInPlace()
      )
    )
  )
  (returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace)
  (encoder): VizdoomEncoder(
    (basic_encoder): ConvEncoder(
      (enc): RecursiveScriptModule(
        original_name=ConvEncoderImpl
        (conv_head): RecursiveScriptModule(
          original_name=Sequential
          (0): RecursiveScriptModule(original_name=Conv2d)
          (1): RecursiveScriptModule(original_name=ELU)
          (2): RecursiveScriptModule(original_name=Conv2d)
          (3): RecursiveScriptModule(original_name=ELU)
          (4): RecursiveScriptModule(original_name=Conv2d)
          (5): RecursiveScriptModule(original_name=ELU)
        )
        (mlp_layers): RecursiveScriptModule(
          original_name=Sequential
          (0): RecursiveScriptModule(original_name=Linear)
          (1): RecursiveScriptModule(original_name=ELU)
        )
      )
    )
  )
  (core): ModelCoreRNN(
    (core): GRU(512, 512)
  )
  (decoder): MlpDecoder(
    (mlp): Identity()
  )
  (critic_linear): Linear(in_features=512, out_features=1, bias=True)
  (action_parameterization): ActionParameterizationDefault(
    (distribution_linear): Linear(in_features=512, out_features=5, bias=True)
  )
)
[2023-04-27 22:28:33,372][26612] Using optimizer <class 'torch.optim.adam.Adam'>
[2023-04-27 22:28:33,373][26612] No checkpoints found
[2023-04-27 22:28:33,373][26612] Did not load from checkpoint, starting from scratch!
[2023-04-27 22:28:33,373][26612] Initialized policy 0 weights for model version 0
[2023-04-27 22:28:33,376][26612] LearnerWorker_p0 finished initialization!
[2023-04-27 22:28:33,376][26612] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2023-04-27 22:28:33,815][19320] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 0. Throughput: 0: nan. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2023-04-27 22:28:34,070][26627] RunningMeanStd input shape: (3, 72, 128)
[2023-04-27 22:28:34,071][26627] RunningMeanStd input shape: (1,)
[2023-04-27 22:28:34,079][26627] ConvEncoder: input_channels=3
[2023-04-27 22:28:34,158][26627] Conv encoder output size: 512
[2023-04-27 22:28:34,159][26627] Policy head output size: 512
[2023-04-27 22:28:34,896][19320] Inference worker 0-0 is ready!
[2023-04-27 22:28:34,897][19320] All inference workers are ready! Signal rollout workers to start!
[2023-04-27 22:28:34,912][26657] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-04-27 22:28:34,913][26630] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-04-27 22:28:34,914][26638] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-04-27 22:28:34,914][26629] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-04-27 22:28:34,914][26626] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-04-27 22:28:34,915][26632] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-04-27 22:28:34,915][26631] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-04-27 22:28:34,915][26628] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-04-27 22:28:34,949][26628] VizDoom game.init() threw an exception ViZDoomUnexpectedExitException('Controlled ViZDoom instance exited unexpectedly.'). Terminate process...
[2023-04-27 22:28:34,950][26628] EvtLoop [rollout_proc1_evt_loop, process=rollout_proc1] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=()
Traceback (most recent call last):
  File "/home/byron/miniconda3/envs/ml-agents/lib/python3.9/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 228, in _game_init
    self.game.init()
vizdoom.vizdoom.ViZDoomUnexpectedExitException: Controlled ViZDoom instance exited unexpectedly.

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "/home/byron/miniconda3/envs/ml-agents/lib/python3.9/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal
    slot_callable(*args)
  File "/home/byron/miniconda3/envs/ml-agents/lib/python3.9/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init
    env_runner.init(self.timing)
  File "/home/byron/miniconda3/envs/ml-agents/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init
    self._reset()
  File "/home/byron/miniconda3/envs/ml-agents/lib/python3.9/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset
    observations, info = e.reset(seed=seed)  # new way of doing seeding since Gym 0.26.0
  File "/home/byron/miniconda3/envs/ml-agents/lib/python3.9/site-packages/gym/core.py", line 323, in reset
    return self.env.reset(**kwargs)
  File "/home/byron/miniconda3/envs/ml-agents/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 125, in reset
    obs, info = self.env.reset(**kwargs)
  File "/home/byron/miniconda3/envs/ml-agents/lib/python3.9/site-packages/sample_factory/algo/utils/make_env.py", line 110, in reset
    obs, info = self.env.reset(**kwargs)
  File "/home/byron/miniconda3/envs/ml-agents/lib/python3.9/site-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 30, in reset
    return self.env.reset(**kwargs)
  File "/home/byron/miniconda3/envs/ml-agents/lib/python3.9/site-packages/gym/core.py", line 379, in reset
    obs, info = self.env.reset(**kwargs)
  File "/home/byron/miniconda3/envs/ml-agents/lib/python3.9/site-packages/sample_factory/envs/env_wrappers.py", line 84, in reset
    obs, info = self.env.reset(**kwargs)
  File "/home/byron/miniconda3/envs/ml-agents/lib/python3.9/site-packages/gym/core.py", line 323, in reset
    return self.env.reset(**kwargs)
  File "/home/byron/miniconda3/envs/ml-agents/lib/python3.9/site-packages/sf_examples/vizdoom/doom/wrappers/multiplayer_stats.py", line 51, in reset
    return self.env.reset(**kwargs)
  File "/home/byron/miniconda3/envs/ml-agents/lib/python3.9/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 323, in reset
    self._ensure_initialized()
  File "/home/byron/miniconda3/envs/ml-agents/lib/python3.9/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 274, in _ensure_initialized
    self.initialize()
  File "/home/byron/miniconda3/envs/ml-agents/lib/python3.9/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 269, in initialize
    self._game_init()
  File "/home/byron/miniconda3/envs/ml-agents/lib/python3.9/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 244, in _game_init
    raise EnvCriticalError()
sample_factory.envs.env_utils.EnvCriticalError
[2023-04-27 22:28:34,951][26628] Unhandled exception  in evt loop rollout_proc1_evt_loop
[2023-04-27 22:28:35,135][26629] Decorrelating experience for 0 frames...
[2023-04-27 22:28:35,135][26630] Decorrelating experience for 0 frames...
[2023-04-27 22:28:35,135][26657] Decorrelating experience for 0 frames...
[2023-04-27 22:28:35,141][26631] Decorrelating experience for 0 frames...
[2023-04-27 22:28:35,326][26629] Decorrelating experience for 32 frames...
[2023-04-27 22:28:35,327][26631] Decorrelating experience for 32 frames...
[2023-04-27 22:28:35,361][26630] Decorrelating experience for 32 frames...
[2023-04-27 22:28:35,399][26632] Decorrelating experience for 0 frames...
[2023-04-27 22:28:35,410][26626] Decorrelating experience for 0 frames...
[2023-04-27 22:28:35,566][26631] Decorrelating experience for 64 frames...
[2023-04-27 22:28:35,567][26657] Decorrelating experience for 32 frames...
[2023-04-27 22:28:35,596][26632] Decorrelating experience for 32 frames...
[2023-04-27 22:28:35,596][26629] Decorrelating experience for 64 frames...
[2023-04-27 22:28:35,597][26630] Decorrelating experience for 64 frames...
[2023-04-27 22:28:35,783][26631] Decorrelating experience for 96 frames...
[2023-04-27 22:28:35,784][26657] Decorrelating experience for 64 frames...
[2023-04-27 22:28:35,825][26626] Decorrelating experience for 32 frames...
[2023-04-27 22:28:35,826][26629] Decorrelating experience for 96 frames...
[2023-04-27 22:28:35,860][26630] Decorrelating experience for 96 frames...
[2023-04-27 22:28:36,028][26626] Decorrelating experience for 64 frames...
[2023-04-27 22:28:36,029][26638] Decorrelating experience for 0 frames...
[2023-04-27 22:28:36,236][26638] Decorrelating experience for 32 frames...
[2023-04-27 22:28:36,278][26626] Decorrelating experience for 96 frames...
[2023-04-27 22:28:36,483][26638] Decorrelating experience for 64 frames...
[2023-04-27 22:28:36,526][26657] Decorrelating experience for 96 frames...
[2023-04-27 22:28:36,742][26638] Decorrelating experience for 96 frames...
[2023-04-27 22:28:36,763][26632] Decorrelating experience for 64 frames...
[2023-04-27 22:28:37,009][26632] Decorrelating experience for 96 frames...
[2023-04-27 22:28:38,609][26612] Signal inference workers to stop experience collection...
[2023-04-27 22:28:38,611][26627] InferenceWorker_p0-w0: stopping experience collection
[2023-04-27 22:28:38,815][19320] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 130.4. Samples: 652. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2023-04-27 22:28:38,816][19320] Avg episode reward: [(0, '2.566')]
[2023-04-27 22:28:40,413][26612] Signal inference workers to resume experience collection...
[2023-04-27 22:28:40,414][26627] InferenceWorker_p0-w0: resuming experience collection
[2023-04-27 22:28:43,469][26627] Updated weights for policy 0, policy_version 10 (0.0582)
[2023-04-27 22:28:43,815][19320] Fps is (10 sec: 4505.6, 60 sec: 4505.6, 300 sec: 4505.6). Total num frames: 45056. Throughput: 0: 307.2. Samples: 3072. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-04-27 22:28:43,816][19320] Avg episode reward: [(0, '4.236')]
[2023-04-27 22:28:46,007][26627] Updated weights for policy 0, policy_version 20 (0.0008)
[2023-04-27 22:28:47,944][26627] Updated weights for policy 0, policy_version 30 (0.0012)
[2023-04-27 22:28:48,815][19320] Fps is (10 sec: 13926.4, 60 sec: 9284.3, 300 sec: 9284.3). Total num frames: 139264. Throughput: 0: 1720.3. Samples: 25804. Policy #0 lag: (min: 0.0, avg: 0.8, max: 1.0)
[2023-04-27 22:28:48,815][19320] Avg episode reward: [(0, '4.246')]
[2023-04-27 22:28:48,821][26612] Saving new best policy, reward=4.246!
[2023-04-27 22:28:50,306][26627] Updated weights for policy 0, policy_version 40 (0.0008)
[2023-04-27 22:28:50,340][19320] Heartbeat connected on Batcher_0
[2023-04-27 22:28:50,342][19320] Heartbeat connected on LearnerWorker_p0
[2023-04-27 22:28:50,349][19320] Heartbeat connected on RolloutWorker_w0
[2023-04-27 22:28:50,350][19320] Heartbeat connected on InferenceWorker_p0-w0
[2023-04-27 22:28:50,353][19320] Heartbeat connected on RolloutWorker_w2
[2023-04-27 22:28:50,356][19320] Heartbeat connected on RolloutWorker_w3
[2023-04-27 22:28:50,358][19320] Heartbeat connected on RolloutWorker_w4
[2023-04-27 22:28:50,361][19320] Heartbeat connected on RolloutWorker_w5
[2023-04-27 22:28:50,365][19320] Heartbeat connected on RolloutWorker_w6
[2023-04-27 22:28:50,366][19320] Heartbeat connected on RolloutWorker_w7
[2023-04-27 22:28:52,258][26627] Updated weights for policy 0, policy_version 50 (0.0007)
[2023-04-27 22:28:53,815][19320] Fps is (10 sec: 18432.0, 60 sec: 11468.8, 300 sec: 11468.8). Total num frames: 229376. Throughput: 0: 2718.3. Samples: 54366. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2023-04-27 22:28:53,816][19320] Avg episode reward: [(0, '4.546')]
[2023-04-27 22:28:53,817][26612] Saving new best policy, reward=4.546!
[2023-04-27 22:28:54,878][26627] Updated weights for policy 0, policy_version 60 (0.0013)
[2023-04-27 22:28:57,353][26627] Updated weights for policy 0, policy_version 70 (0.0011)
[2023-04-27 22:28:58,815][19320] Fps is (10 sec: 17612.6, 60 sec: 12615.6, 300 sec: 12615.6). Total num frames: 315392. Throughput: 0: 2677.7. Samples: 66944. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-04-27 22:28:58,816][19320] Avg episode reward: [(0, '4.345')]
[2023-04-27 22:28:59,354][26627] Updated weights for policy 0, policy_version 80 (0.0009)
[2023-04-27 22:29:02,010][26627] Updated weights for policy 0, policy_version 90 (0.0014)
[2023-04-27 22:29:03,815][19320] Fps is (10 sec: 15974.3, 60 sec: 12970.7, 300 sec: 12970.7). Total num frames: 389120. Throughput: 0: 3074.0. Samples: 92220. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2023-04-27 22:29:03,815][19320] Avg episode reward: [(0, '4.536')]
[2023-04-27 22:29:04,867][26627] Updated weights for policy 0, policy_version 100 (0.0020)
[2023-04-27 22:29:07,514][26627] Updated weights for policy 0, policy_version 110 (0.0011)
[2023-04-27 22:29:08,815][19320] Fps is (10 sec: 15974.6, 60 sec: 13575.3, 300 sec: 13575.3). Total num frames: 475136. Throughput: 0: 3287.9. Samples: 115078. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-04-27 22:29:08,816][19320] Avg episode reward: [(0, '4.565')]
[2023-04-27 22:29:08,829][26612] Saving new best policy, reward=4.565!
[2023-04-27 22:29:09,550][26627] Updated weights for policy 0, policy_version 120 (0.0007)
[2023-04-27 22:29:11,733][26627] Updated weights for policy 0, policy_version 130 (0.0009)
[2023-04-27 22:29:13,474][26627] Updated weights for policy 0, policy_version 140 (0.0009)
[2023-04-27 22:29:13,815][19320] Fps is (10 sec: 19251.2, 60 sec: 14540.8, 300 sec: 14540.8). Total num frames: 581632. Throughput: 0: 3246.8. Samples: 129872. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-04-27 22:29:13,816][19320] Avg episode reward: [(0, '4.521')]
[2023-04-27 22:29:15,075][26627] Updated weights for policy 0, policy_version 150 (0.0006)
[2023-04-27 22:29:16,757][26627] Updated weights for policy 0, policy_version 160 (0.0008)
[2023-04-27 22:29:18,355][26627] Updated weights for policy 0, policy_version 170 (0.0008)
[2023-04-27 22:29:18,815][19320] Fps is (10 sec: 22937.4, 60 sec: 15655.8, 300 sec: 15655.8). Total num frames: 704512. Throughput: 0: 3678.4. Samples: 165526. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-04-27 22:29:18,816][19320] Avg episode reward: [(0, '4.458')]
[2023-04-27 22:29:20,047][26627] Updated weights for policy 0, policy_version 180 (0.0008)
[2023-04-27 22:29:21,736][26627] Updated weights for policy 0, policy_version 190 (0.0009)
[2023-04-27 22:29:23,376][26627] Updated weights for policy 0, policy_version 200 (0.0009)
[2023-04-27 22:29:23,815][19320] Fps is (10 sec: 24576.1, 60 sec: 16547.9, 300 sec: 16547.9). Total num frames: 827392. Throughput: 0: 4482.5. Samples: 202364. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-04-27 22:29:23,815][19320] Avg episode reward: [(0, '4.534')]
[2023-04-27 22:29:25,033][26627] Updated weights for policy 0, policy_version 210 (0.0008)
[2023-04-27 22:29:26,702][26627] Updated weights for policy 0, policy_version 220 (0.0007)
[2023-04-27 22:29:28,383][26627] Updated weights for policy 0, policy_version 230 (0.0007)
[2023-04-27 22:29:28,815][19320] Fps is (10 sec: 24576.2, 60 sec: 17277.7, 300 sec: 17277.7). Total num frames: 950272. Throughput: 0: 4842.8. Samples: 221000. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-04-27 22:29:28,816][19320] Avg episode reward: [(0, '4.485')]
[2023-04-27 22:29:30,029][26627] Updated weights for policy 0, policy_version 240 (0.0008)
[2023-04-27 22:29:31,795][26627] Updated weights for policy 0, policy_version 250 (0.0008)
[2023-04-27 22:29:33,815][19320] Fps is (10 sec: 23346.9, 60 sec: 17681.0, 300 sec: 17681.0). Total num frames: 1060864. Throughput: 0: 5146.0. Samples: 257374. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2023-04-27 22:29:33,816][19320] Avg episode reward: [(0, '4.669')]
[2023-04-27 22:29:33,818][26612] Saving new best policy, reward=4.669!
[2023-04-27 22:29:34,002][26627] Updated weights for policy 0, policy_version 260 (0.0008)
[2023-04-27 22:29:36,837][26627] Updated weights for policy 0, policy_version 270 (0.0010)
[2023-04-27 22:29:38,730][26627] Updated weights for policy 0, policy_version 280 (0.0007)
[2023-04-27 22:29:38,815][19320] Fps is (10 sec: 19660.9, 60 sec: 19114.7, 300 sec: 17644.3). Total num frames: 1146880. Throughput: 0: 5076.0. Samples: 282788. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-04-27 22:29:38,816][19320] Avg episode reward: [(0, '4.759')]
[2023-04-27 22:29:38,821][26612] Saving new best policy, reward=4.759!
[2023-04-27 22:29:41,483][26627] Updated weights for policy 0, policy_version 290 (0.0013)
[2023-04-27 22:29:43,815][19320] Fps is (10 sec: 16384.2, 60 sec: 19660.8, 300 sec: 17495.8). Total num frames: 1224704. Throughput: 0: 5061.7. Samples: 294720. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-04-27 22:29:43,817][19320] Avg episode reward: [(0, '4.496')]
[2023-04-27 22:29:43,996][26627] Updated weights for policy 0, policy_version 300 (0.0009)
[2023-04-27 22:29:45,921][26627] Updated weights for policy 0, policy_version 310 (0.0009)
[2023-04-27 22:29:47,745][26627] Updated weights for policy 0, policy_version 320 (0.0007)
[2023-04-27 22:29:48,815][19320] Fps is (10 sec: 17203.2, 60 sec: 19660.8, 300 sec: 17585.5). Total num frames: 1318912. Throughput: 0: 5135.5. Samples: 323316. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-04-27 22:29:48,816][19320] Avg episode reward: [(0, '4.280')]
[2023-04-27 22:29:50,625][26627] Updated weights for policy 0, policy_version 330 (0.0007)
[2023-04-27 22:29:52,896][26627] Updated weights for policy 0, policy_version 340 (0.0009)
[2023-04-27 22:29:53,815][19320] Fps is (10 sec: 17612.0, 60 sec: 19524.1, 300 sec: 17510.3). Total num frames: 1400832. Throughput: 0: 5191.6. Samples: 348700. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-04-27 22:29:53,816][19320] Avg episode reward: [(0, '4.253')]
[2023-04-27 22:29:56,313][26627] Updated weights for policy 0, policy_version 350 (0.0015)
[2023-04-27 22:29:58,498][26627] Updated weights for policy 0, policy_version 360 (0.0007)
[2023-04-27 22:29:58,815][19320] Fps is (10 sec: 15974.4, 60 sec: 19387.8, 300 sec: 17396.0). Total num frames: 1478656. Throughput: 0: 5059.1. Samples: 357532. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-04-27 22:29:58,816][19320] Avg episode reward: [(0, '4.385')]
[2023-04-27 22:30:01,271][26627] Updated weights for policy 0, policy_version 370 (0.0012)
[2023-04-27 22:30:03,815][19320] Fps is (10 sec: 14746.0, 60 sec: 19319.4, 300 sec: 17203.2). Total num frames: 1548288. Throughput: 0: 4768.2. Samples: 380094. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-04-27 22:30:03,816][19320] Avg episode reward: [(0, '4.464')]
[2023-04-27 22:30:04,133][26627] Updated weights for policy 0, policy_version 380 (0.0012)
[2023-04-27 22:30:06,244][26627] Updated weights for policy 0, policy_version 390 (0.0007)
[2023-04-27 22:30:07,903][26627] Updated weights for policy 0, policy_version 400 (0.0008)
[2023-04-27 22:30:08,815][19320] Fps is (10 sec: 18022.4, 60 sec: 19729.1, 300 sec: 17461.9). Total num frames: 1658880. Throughput: 0: 4616.3. Samples: 410098. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-04-27 22:30:08,816][19320] Avg episode reward: [(0, '4.384')]
[2023-04-27 22:30:09,574][26627] Updated weights for policy 0, policy_version 410 (0.0009)
[2023-04-27 22:30:11,225][26627] Updated weights for policy 0, policy_version 420 (0.0008)
[2023-04-27 22:30:12,922][26627] Updated weights for policy 0, policy_version 430 (0.0010)
[2023-04-27 22:30:13,815][19320] Fps is (10 sec: 23347.7, 60 sec: 20002.1, 300 sec: 17817.6). Total num frames: 1781760. Throughput: 0: 4617.6. Samples: 428792. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-04-27 22:30:13,816][19320] Avg episode reward: [(0, '4.328')]
[2023-04-27 22:30:14,554][26627] Updated weights for policy 0, policy_version 440 (0.0007)
[2023-04-27 22:30:16,206][26627] Updated weights for policy 0, policy_version 450 (0.0007)
[2023-04-27 22:30:17,871][26627] Updated weights for policy 0, policy_version 460 (0.0009)
[2023-04-27 22:30:18,815][19320] Fps is (10 sec: 24985.5, 60 sec: 20070.4, 300 sec: 18178.4). Total num frames: 1908736. Throughput: 0: 4631.5. Samples: 465790. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-04-27 22:30:18,816][19320] Avg episode reward: [(0, '4.316')]
[2023-04-27 22:30:19,460][26627] Updated weights for policy 0, policy_version 470 (0.0008)
[2023-04-27 22:30:21,046][26627] Updated weights for policy 0, policy_version 480 (0.0009)
[2023-04-27 22:30:22,710][26627] Updated weights for policy 0, policy_version 490 (0.0009)
[2023-04-27 22:30:23,815][19320] Fps is (10 sec: 24985.5, 60 sec: 20070.4, 300 sec: 18469.2). Total num frames: 2031616. Throughput: 0: 4906.8. Samples: 503596. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-04-27 22:30:23,816][19320] Avg episode reward: [(0, '4.388')]
[2023-04-27 22:30:24,368][26627] Updated weights for policy 0, policy_version 500 (0.0007)
[2023-04-27 22:30:25,982][26627] Updated weights for policy 0, policy_version 510 (0.0009)
[2023-04-27 22:30:28,815][19320] Fps is (10 sec: 20889.7, 60 sec: 19456.0, 300 sec: 18414.2). Total num frames: 2117632. Throughput: 0: 5056.4. Samples: 522256. Policy #0 lag: (min: 0.0, avg: 0.7, max: 1.0)
[2023-04-27 22:30:28,816][19320] Avg episode reward: [(0, '4.397')]
[2023-04-27 22:30:28,820][26612] Saving /home/byron/projects/rl-learning-course/unit-08/train_dir/default_experiment/checkpoint_p0/checkpoint_000000517_2117632.pth...
[2023-04-27 22:30:29,361][26627] Updated weights for policy 0, policy_version 520 (0.0015)
[2023-04-27 22:30:31,575][26627] Updated weights for policy 0, policy_version 530 (0.0009)
[2023-04-27 22:30:33,673][26627] Updated weights for policy 0, policy_version 540 (0.0007)
[2023-04-27 22:30:33,815][19320] Fps is (10 sec: 18022.5, 60 sec: 19183.0, 300 sec: 18432.0). Total num frames: 2211840. Throughput: 0: 4930.8. Samples: 545200. Policy #0 lag: (min: 0.0, avg: 0.7, max: 1.0)
[2023-04-27 22:30:33,816][19320] Avg episode reward: [(0, '4.420')]
[2023-04-27 22:30:35,975][26627] Updated weights for policy 0, policy_version 550 (0.0008)
[2023-04-27 22:30:38,045][26627] Updated weights for policy 0, policy_version 560 (0.0010)
[2023-04-27 22:30:38,815][19320] Fps is (10 sec: 18841.5, 60 sec: 19319.5, 300 sec: 18448.4). Total num frames: 2306048. Throughput: 0: 4988.7. Samples: 573190. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-04-27 22:30:38,816][19320] Avg episode reward: [(0, '4.549')]
[2023-04-27 22:30:40,672][26627] Updated weights for policy 0, policy_version 570 (0.0011)
[2023-04-27 22:30:43,150][26627] Updated weights for policy 0, policy_version 580 (0.0012)
[2023-04-27 22:30:43,815][19320] Fps is (10 sec: 17612.8, 60 sec: 19387.7, 300 sec: 18369.0). Total num frames: 2387968. Throughput: 0: 5056.8. Samples: 585088. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-04-27 22:30:43,816][19320] Avg episode reward: [(0, '4.520')]
[2023-04-27 22:30:45,278][26627] Updated weights for policy 0, policy_version 590 (0.0007)
[2023-04-27 22:30:47,790][26627] Updated weights for policy 0, policy_version 600 (0.0007)
[2023-04-27 22:30:48,815][19320] Fps is (10 sec: 17203.2, 60 sec: 19319.5, 300 sec: 18356.1). Total num frames: 2478080. Throughput: 0: 5159.8. Samples: 612286. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-04-27 22:30:48,816][19320] Avg episode reward: [(0, '4.326')]
[2023-04-27 22:30:50,346][26627] Updated weights for policy 0, policy_version 610 (0.0008)
[2023-04-27 22:30:53,815][19320] Fps is (10 sec: 14745.6, 60 sec: 18910.0, 300 sec: 18110.2). Total num frames: 2535424. Throughput: 0: 4977.5. Samples: 634084. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-04-27 22:30:53,816][19320] Avg episode reward: [(0, '4.424')]
[2023-04-27 22:30:53,893][26627] Updated weights for policy 0, policy_version 620 (0.0019)
[2023-04-27 22:30:56,047][26627] Updated weights for policy 0, policy_version 630 (0.0007)
[2023-04-27 22:30:58,480][26627] Updated weights for policy 0, policy_version 640 (0.0011)
[2023-04-27 22:30:58,815][19320] Fps is (10 sec: 14745.6, 60 sec: 19114.7, 300 sec: 18107.1). Total num frames: 2625536. Throughput: 0: 4805.1. Samples: 645020. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2023-04-27 22:30:58,815][19320] Avg episode reward: [(0, '4.450')]
[2023-04-27 22:31:00,719][26627] Updated weights for policy 0, policy_version 650 (0.0008)
[2023-04-27 22:31:02,385][26627] Updated weights for policy 0, policy_version 660 (0.0008)
[2023-04-27 22:31:03,815][19320] Fps is (10 sec: 20070.4, 60 sec: 19797.4, 300 sec: 18240.9). Total num frames: 2736128. Throughput: 0: 4617.8. Samples: 673592. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-04-27 22:31:03,816][19320] Avg episode reward: [(0, '4.602')]
[2023-04-27 22:31:04,041][26627] Updated weights for policy 0, policy_version 670 (0.0010)
[2023-04-27 22:31:05,642][26627] Updated weights for policy 0, policy_version 680 (0.0009)
[2023-04-27 22:31:07,304][26627] Updated weights for policy 0, policy_version 690 (0.0007)
[2023-04-27 22:31:08,815][19320] Fps is (10 sec: 23756.8, 60 sec: 20070.4, 300 sec: 18471.6). Total num frames: 2863104. Throughput: 0: 4611.2. Samples: 711102. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2023-04-27 22:31:08,816][19320] Avg episode reward: [(0, '4.465')]
[2023-04-27 22:31:08,913][26627] Updated weights for policy 0, policy_version 700 (0.0008)
[2023-04-27 22:31:10,614][26627] Updated weights for policy 0, policy_version 710 (0.0006)
[2023-04-27 22:31:12,270][26627] Updated weights for policy 0, policy_version 720 (0.0007)
[2023-04-27 22:31:13,815][19320] Fps is (10 sec: 24985.6, 60 sec: 20070.4, 300 sec: 18662.4). Total num frames: 2985984. Throughput: 0: 4608.2. Samples: 729626. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-04-27 22:31:13,816][19320] Avg episode reward: [(0, '4.396')]
[2023-04-27 22:31:13,869][26627] Updated weights for policy 0, policy_version 730 (0.0007)
[2023-04-27 22:31:15,506][26627] Updated weights for policy 0, policy_version 740 (0.0009)
[2023-04-27 22:31:17,160][26627] Updated weights for policy 0, policy_version 750 (0.0008)
[2023-04-27 22:31:18,815][19320] Fps is (10 sec: 24576.0, 60 sec: 20002.1, 300 sec: 18841.6). Total num frames: 3108864. Throughput: 0: 4932.6. Samples: 767168. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-04-27 22:31:18,816][19320] Avg episode reward: [(0, '4.364')]
[2023-04-27 22:31:18,848][26627] Updated weights for policy 0, policy_version 760 (0.0009)
[2023-04-27 22:31:21,623][26627] Updated weights for policy 0, policy_version 770 (0.0013)
[2023-04-27 22:31:23,815][19320] Fps is (10 sec: 20070.4, 60 sec: 19251.2, 300 sec: 18745.2). Total num frames: 3186688. Throughput: 0: 4907.6. Samples: 794032. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-04-27 22:31:23,816][19320] Avg episode reward: [(0, '4.513')]
[2023-04-27 22:31:24,158][26627] Updated weights for policy 0, policy_version 780 (0.0013)
[2023-04-27 22:31:26,913][26627] Updated weights for policy 0, policy_version 790 (0.0012)
[2023-04-27 22:31:28,815][19320] Fps is (10 sec: 14336.0, 60 sec: 18909.9, 300 sec: 18584.1). Total num frames: 3252224. Throughput: 0: 4932.8. Samples: 807066. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-04-27 22:31:28,815][19320] Avg episode reward: [(0, '4.367')]
[2023-04-27 22:31:30,689][26627] Updated weights for policy 0, policy_version 800 (0.0012)
[2023-04-27 22:31:33,035][26627] Updated weights for policy 0, policy_version 810 (0.0011)
[2023-04-27 22:31:33,815][19320] Fps is (10 sec: 14745.6, 60 sec: 18705.1, 300 sec: 18523.0). Total num frames: 3334144. Throughput: 0: 4712.5. Samples: 824348. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-04-27 22:31:33,816][19320] Avg episode reward: [(0, '4.320')]
[2023-04-27 22:31:35,061][26627] Updated weights for policy 0, policy_version 820 (0.0007)
[2023-04-27 22:31:37,474][26627] Updated weights for policy 0, policy_version 830 (0.0010)
[2023-04-27 22:31:38,815][19320] Fps is (10 sec: 16793.5, 60 sec: 18568.5, 300 sec: 18487.4). Total num frames: 3420160. Throughput: 0: 4863.2. Samples: 852926. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2023-04-27 22:31:38,816][19320] Avg episode reward: [(0, '4.490')]
[2023-04-27 22:31:40,044][26627] Updated weights for policy 0, policy_version 840 (0.0007)
[2023-04-27 22:31:42,664][26627] Updated weights for policy 0, policy_version 850 (0.0014)
[2023-04-27 22:31:43,815][19320] Fps is (10 sec: 15974.4, 60 sec: 18432.0, 300 sec: 18388.9). Total num frames: 3493888. Throughput: 0: 4869.0. Samples: 864126. Policy #0 lag: (min: 0.0, avg: 0.7, max: 1.0)
[2023-04-27 22:31:43,816][19320] Avg episode reward: [(0, '4.454')]
[2023-04-27 22:31:45,339][26627] Updated weights for policy 0, policy_version 860 (0.0014)
[2023-04-27 22:31:47,414][26627] Updated weights for policy 0, policy_version 870 (0.0015)
[2023-04-27 22:31:48,815][19320] Fps is (10 sec: 16793.2, 60 sec: 18500.2, 300 sec: 18400.5). Total num frames: 3588096. Throughput: 0: 4780.7. Samples: 888726. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-04-27 22:31:48,816][19320] Avg episode reward: [(0, '4.718')]
[2023-04-27 22:31:49,524][26627] Updated weights for policy 0, policy_version 880 (0.0008)
[2023-04-27 22:31:51,616][26627] Updated weights for policy 0, policy_version 890 (0.0012)
[2023-04-27 22:31:53,815][19320] Fps is (10 sec: 18841.4, 60 sec: 19114.6, 300 sec: 18411.5). Total num frames: 3682304. Throughput: 0: 4563.8. Samples: 916472. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-04-27 22:31:53,816][19320] Avg episode reward: [(0, '4.287')]
[2023-04-27 22:31:53,847][26627] Updated weights for policy 0, policy_version 900 (0.0011)
[2023-04-27 22:31:55,513][26627] Updated weights for policy 0, policy_version 910 (0.0009)
[2023-04-27 22:31:57,111][26627] Updated weights for policy 0, policy_version 920 (0.0007)
[2023-04-27 22:31:58,754][26627] Updated weights for policy 0, policy_version 930 (0.0007)
[2023-04-27 22:31:58,815][19320] Fps is (10 sec: 22118.6, 60 sec: 19729.0, 300 sec: 18581.8). Total num frames: 3809280. Throughput: 0: 4564.9. Samples: 935046. Policy #0 lag: (min: 0.0, avg: 0.7, max: 1.0)
[2023-04-27 22:31:58,816][19320] Avg episode reward: [(0, '4.318')]
[2023-04-27 22:32:00,439][26627] Updated weights for policy 0, policy_version 940 (0.0007)
[2023-04-27 22:32:02,146][26627] Updated weights for policy 0, policy_version 950 (0.0007)
[2023-04-27 22:32:03,815][19320] Fps is (10 sec: 24576.2, 60 sec: 19865.6, 300 sec: 18705.1). Total num frames: 3928064. Throughput: 0: 4548.2. Samples: 971838. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-04-27 22:32:03,816][19320] Avg episode reward: [(0, '4.347')]
[2023-04-27 22:32:03,837][26627] Updated weights for policy 0, policy_version 960 (0.0008)
[2023-04-27 22:32:05,497][26627] Updated weights for policy 0, policy_version 970 (0.0008)
[2023-04-27 22:32:06,763][26612] Stopping Batcher_0...
[2023-04-27 22:32:06,763][26612] Saving /home/byron/projects/rl-learning-course/unit-08/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
[2023-04-27 22:32:06,763][26612] Loop batcher_evt_loop terminating...
[2023-04-27 22:32:06,763][19320] Component Batcher_0 stopped!
[2023-04-27 22:32:06,764][19320] Component RolloutWorker_w1 process died already! Don't wait for it.
[2023-04-27 22:32:06,768][26638] Stopping RolloutWorker_w7...
[2023-04-27 22:32:06,769][26638] Loop rollout_proc7_evt_loop terminating...
[2023-04-27 22:32:06,769][26630] Stopping RolloutWorker_w3...
[2023-04-27 22:32:06,769][26631] Stopping RolloutWorker_w4...
[2023-04-27 22:32:06,769][26630] Loop rollout_proc3_evt_loop terminating...
[2023-04-27 22:32:06,769][26631] Loop rollout_proc4_evt_loop terminating...
[2023-04-27 22:32:06,769][26629] Stopping RolloutWorker_w2...
[2023-04-27 22:32:06,768][19320] Component RolloutWorker_w7 stopped!
[2023-04-27 22:32:06,769][26629] Loop rollout_proc2_evt_loop terminating...
[2023-04-27 22:32:06,770][19320] Component RolloutWorker_w3 stopped!
[2023-04-27 22:32:06,770][26632] Stopping RolloutWorker_w5...
[2023-04-27 22:32:06,771][26632] Loop rollout_proc5_evt_loop terminating...
[2023-04-27 22:32:06,771][19320] Component RolloutWorker_w4 stopped!
[2023-04-27 22:32:06,772][26657] Stopping RolloutWorker_w6...
[2023-04-27 22:32:06,773][26657] Loop rollout_proc6_evt_loop terminating...
[2023-04-27 22:32:06,773][19320] Component RolloutWorker_w2 stopped!
[2023-04-27 22:32:06,774][19320] Component RolloutWorker_w5 stopped!
[2023-04-27 22:32:06,775][19320] Component RolloutWorker_w6 stopped!
[2023-04-27 22:32:06,775][26627] Weights refcount: 2 0
[2023-04-27 22:32:06,777][26627] Stopping InferenceWorker_p0-w0...
[2023-04-27 22:32:06,777][26627] Loop inference_proc0-0_evt_loop terminating...
[2023-04-27 22:32:06,777][19320] Component InferenceWorker_p0-w0 stopped!
[2023-04-27 22:32:06,786][26626] Stopping RolloutWorker_w0...
[2023-04-27 22:32:06,787][26626] Loop rollout_proc0_evt_loop terminating...
[2023-04-27 22:32:06,786][19320] Component RolloutWorker_w0 stopped!
[2023-04-27 22:32:06,811][26612] Saving /home/byron/projects/rl-learning-course/unit-08/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
[2023-04-27 22:32:06,858][26612] Stopping LearnerWorker_p0...
[2023-04-27 22:32:06,859][26612] Loop learner_proc0_evt_loop terminating...
[2023-04-27 22:32:06,859][19320] Component LearnerWorker_p0 stopped!
[2023-04-27 22:32:06,860][19320] Waiting for process learner_proc0 to stop...
[2023-04-27 22:32:07,560][19320] Waiting for process inference_proc0-0 to join...
[2023-04-27 22:32:07,561][19320] Waiting for process rollout_proc0 to join...
[2023-04-27 22:32:07,562][19320] Waiting for process rollout_proc1 to join...
[2023-04-27 22:32:07,563][19320] Waiting for process rollout_proc2 to join...
[2023-04-27 22:32:07,564][19320] Waiting for process rollout_proc3 to join...
[2023-04-27 22:32:07,564][19320] Waiting for process rollout_proc4 to join...
[2023-04-27 22:32:07,565][19320] Waiting for process rollout_proc5 to join...
[2023-04-27 22:32:07,566][19320] Waiting for process rollout_proc6 to join...
[2023-04-27 22:32:07,567][19320] Waiting for process rollout_proc7 to join...
[2023-04-27 22:32:07,567][19320] Batcher 0 profile tree view:
batching: 12.7812, releasing_batches: 0.0195
[2023-04-27 22:32:07,568][19320] InferenceWorker_p0-w0 profile tree view:
wait_policy: 0.0000
  wait_policy_total: 2.8370
update_model: 2.8123
  weight_update: 0.0007
one_step: 0.0023
  handle_policy_step: 195.8112
    deserialize: 5.6395, stack: 0.7269, obs_to_device_normalize: 44.5135, forward: 68.6296, send_messages: 17.9614
    prepare_outputs: 52.0115
      to_cpu: 45.1667
[2023-04-27 22:32:07,569][19320] Learner 0 profile tree view:
misc: 0.0037, prepare_batch: 9.4485
train: 22.5017
  epoch_init: 0.0033, minibatch_init: 0.0045, losses_postprocess: 0.4800, kl_divergence: 0.4893, after_optimizer: 6.8805
  calculate_losses: 7.1964
    losses_init: 0.0020, forward_head: 0.5407, bptt_initial: 3.3368, tail: 0.4113, advantages_returns: 0.1193, losses: 1.7274
    bptt: 0.9502
      bptt_forward_core: 0.9150
  update: 7.1922
    clip: 0.8865
[2023-04-27 22:32:07,569][19320] RolloutWorker_w0 profile tree view:
wait_for_trajectories: 0.0991, enqueue_policy_requests: 5.1038, env_step: 94.9605, overhead: 6.8366, complete_rollouts: 0.2024
save_policy_outputs: 6.2491
  split_output_tensors: 2.9626
[2023-04-27 22:32:07,570][19320] RolloutWorker_w7 profile tree view:
wait_for_trajectories: 0.0969, enqueue_policy_requests: 5.1019, env_step: 95.1988, overhead: 6.8454, complete_rollouts: 0.2055
save_policy_outputs: 6.4640
  split_output_tensors: 3.0653
[2023-04-27 22:32:07,571][19320] Loop Runner_EvtLoop terminating...
[2023-04-27 22:32:07,572][19320] Runner profile tree view:
main_loop: 217.2086
[2023-04-27 22:32:07,573][19320] Collected {0: 4005888}, FPS: 18442.6
[2023-04-27 22:33:30,876][19320] Loading existing experiment configuration from /home/byron/projects/rl-learning-course/unit-08/train_dir/default_experiment/config.json
[2023-04-27 22:33:30,877][19320] Overriding arg 'num_workers' with value 1 passed from command line
[2023-04-27 22:33:30,878][19320] Adding new argument 'no_render'=True that is not in the saved config file!
[2023-04-27 22:33:30,878][19320] Adding new argument 'save_video'=True that is not in the saved config file!
[2023-04-27 22:33:30,879][19320] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
[2023-04-27 22:33:30,879][19320] Adding new argument 'video_name'=None that is not in the saved config file!
[2023-04-27 22:33:30,880][19320] Adding new argument 'max_num_frames'=1000000000.0 that is not in the saved config file!
[2023-04-27 22:33:30,881][19320] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
[2023-04-27 22:33:30,882][19320] Adding new argument 'push_to_hub'=False that is not in the saved config file!
[2023-04-27 22:33:30,882][19320] Adding new argument 'hf_repository'=None that is not in the saved config file!
[2023-04-27 22:33:30,883][19320] Adding new argument 'policy_index'=0 that is not in the saved config file!
[2023-04-27 22:33:30,883][19320] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
[2023-04-27 22:33:30,884][19320] Adding new argument 'train_script'=None that is not in the saved config file!
[2023-04-27 22:33:30,885][19320] Adding new argument 'enjoy_script'=None that is not in the saved config file!
[2023-04-27 22:33:30,885][19320] Using frameskip 1 and render_action_repeat=4 for evaluation
[2023-04-27 22:33:30,891][19320] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-04-27 22:33:30,892][19320] RunningMeanStd input shape: (3, 72, 128)
[2023-04-27 22:33:30,893][19320] RunningMeanStd input shape: (1,)
[2023-04-27 22:33:30,904][19320] ConvEncoder: input_channels=3
[2023-04-27 22:33:30,994][19320] Conv encoder output size: 512
[2023-04-27 22:33:30,995][19320] Policy head output size: 512
[2023-04-27 22:33:32,427][19320] Loading state from checkpoint /home/byron/projects/rl-learning-course/unit-08/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
[2023-04-27 22:33:33,708][19320] Num frames 100...
[2023-04-27 22:33:33,796][19320] Num frames 200...
[2023-04-27 22:33:33,876][19320] Num frames 300...
[2023-04-27 22:33:33,996][19320] Avg episode rewards: #0: 3.840, true rewards: #0: 3.840
[2023-04-27 22:33:33,997][19320] Avg episode reward: 3.840, avg true_objective: 3.840
[2023-04-27 22:33:34,014][19320] Num frames 400...
[2023-04-27 22:33:34,096][19320] Num frames 500...
[2023-04-27 22:33:34,173][19320] Num frames 600...
[2023-04-27 22:33:34,251][19320] Num frames 700...
[2023-04-27 22:33:34,358][19320] Avg episode rewards: #0: 3.840, true rewards: #0: 3.840
[2023-04-27 22:33:34,359][19320] Avg episode reward: 3.840, avg true_objective: 3.840
[2023-04-27 22:33:34,389][19320] Num frames 800...
[2023-04-27 22:33:34,468][19320] Num frames 900...
[2023-04-27 22:33:34,542][19320] Num frames 1000...
[2023-04-27 22:33:34,617][19320] Num frames 1100...
[2023-04-27 22:33:34,736][19320] Avg episode rewards: #0: 4.280, true rewards: #0: 3.947
[2023-04-27 22:33:34,737][19320] Avg episode reward: 4.280, avg true_objective: 3.947
[2023-04-27 22:33:34,752][19320] Num frames 1200...
[2023-04-27 22:33:34,835][19320] Num frames 1300...
[2023-04-27 22:33:34,915][19320] Num frames 1400...
[2023-04-27 22:33:34,997][19320] Num frames 1500...
[2023-04-27 22:33:35,092][19320] Num frames 1600...
[2023-04-27 22:33:35,144][19320] Avg episode rewards: #0: 4.500, true rewards: #0: 4.000
[2023-04-27 22:33:35,145][19320] Avg episode reward: 4.500, avg true_objective: 4.000
[2023-04-27 22:33:35,229][19320] Num frames 1700...
[2023-04-27 22:33:35,311][19320] Num frames 1800...
[2023-04-27 22:33:35,391][19320] Num frames 1900...
[2023-04-27 22:33:35,474][19320] Num frames 2000...
[2023-04-27 22:33:35,569][19320] Avg episode rewards: #0: 4.696, true rewards: #0: 4.096
[2023-04-27 22:33:35,570][19320] Avg episode reward: 4.696, avg true_objective: 4.096
[2023-04-27 22:33:35,617][19320] Num frames 2100...
[2023-04-27 22:33:35,698][19320] Num frames 2200...
[2023-04-27 22:33:35,772][19320] Num frames 2300...
[2023-04-27 22:33:35,849][19320] Num frames 2400...
[2023-04-27 22:33:35,932][19320] Avg episode rewards: #0: 4.553, true rewards: #0: 4.053
[2023-04-27 22:33:35,933][19320] Avg episode reward: 4.553, avg true_objective: 4.053
[2023-04-27 22:33:35,989][19320] Num frames 2500...
[2023-04-27 22:33:36,070][19320] Num frames 2600...
[2023-04-27 22:33:36,157][19320] Num frames 2700...
[2023-04-27 22:33:36,236][19320] Num frames 2800...
[2023-04-27 22:33:36,319][19320] Num frames 2900...
[2023-04-27 22:33:36,396][19320] Num frames 3000...
[2023-04-27 22:33:36,479][19320] Avg episode rewards: #0: 5.200, true rewards: #0: 4.343
[2023-04-27 22:33:36,480][19320] Avg episode reward: 5.200, avg true_objective: 4.343
[2023-04-27 22:33:36,531][19320] Num frames 3100...
[2023-04-27 22:33:36,612][19320] Num frames 3200...
[2023-04-27 22:33:36,740][19320] Avg episode rewards: #0: 4.870, true rewards: #0: 4.120
[2023-04-27 22:33:36,741][19320] Avg episode reward: 4.870, avg true_objective: 4.120
[2023-04-27 22:33:36,747][19320] Num frames 3300...
[2023-04-27 22:33:36,839][19320] Num frames 3400...
[2023-04-27 22:33:36,925][19320] Num frames 3500...
[2023-04-27 22:33:36,998][19320] Num frames 3600...
[2023-04-27 22:33:37,114][19320] Avg episode rewards: #0: 4.756, true rewards: #0: 4.089
[2023-04-27 22:33:37,115][19320] Avg episode reward: 4.756, avg true_objective: 4.089
[2023-04-27 22:33:37,136][19320] Num frames 3700...
[2023-04-27 22:33:37,237][19320] Num frames 3800...
[2023-04-27 22:33:37,323][19320] Num frames 3900...
[2023-04-27 22:33:37,407][19320] Num frames 4000...
[2023-04-27 22:33:37,512][19320] Avg episode rewards: #0: 4.664, true rewards: #0: 4.064
[2023-04-27 22:33:37,513][19320] Avg episode reward: 4.664, avg true_objective: 4.064
[2023-04-27 22:33:41,947][19320] Replay video saved to /home/byron/projects/rl-learning-course/unit-08/train_dir/default_experiment/replay.mp4!
[2023-04-27 22:36:21,719][19320] Loading existing experiment configuration from /home/byron/projects/rl-learning-course/unit-08/train_dir/default_experiment/config.json
[2023-04-27 22:36:21,720][19320] Overriding arg 'num_workers' with value 1 passed from command line
[2023-04-27 22:36:21,721][19320] Adding new argument 'no_render'=True that is not in the saved config file!
[2023-04-27 22:36:21,722][19320] Adding new argument 'save_video'=True that is not in the saved config file!
[2023-04-27 22:36:21,722][19320] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
[2023-04-27 22:36:21,723][19320] Adding new argument 'video_name'=None that is not in the saved config file!
[2023-04-27 22:36:21,724][19320] Adding new argument 'max_num_frames'=100000 that is not in the saved config file!
[2023-04-27 22:36:21,724][19320] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
[2023-04-27 22:36:21,725][19320] Adding new argument 'push_to_hub'=True that is not in the saved config file!
[2023-04-27 22:36:21,726][19320] Adding new argument 'hf_repository'='ItchyB/rl_course_vizdoom_health_gathering_supreme' that is not in the saved config file!
[2023-04-27 22:36:21,726][19320] Adding new argument 'policy_index'=0 that is not in the saved config file!
[2023-04-27 22:36:21,726][19320] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
[2023-04-27 22:36:21,727][19320] Adding new argument 'train_script'=None that is not in the saved config file!
[2023-04-27 22:36:21,728][19320] Adding new argument 'enjoy_script'=None that is not in the saved config file!
[2023-04-27 22:36:21,729][19320] Using frameskip 1 and render_action_repeat=4 for evaluation
[2023-04-27 22:36:21,732][19320] RunningMeanStd input shape: (3, 72, 128)
[2023-04-27 22:36:21,733][19320] RunningMeanStd input shape: (1,)
[2023-04-27 22:36:21,740][19320] ConvEncoder: input_channels=3
[2023-04-27 22:36:21,763][19320] Conv encoder output size: 512
[2023-04-27 22:36:21,764][19320] Policy head output size: 512
[2023-04-27 22:36:21,791][19320] Loading state from checkpoint /home/byron/projects/rl-learning-course/unit-08/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
[2023-04-27 22:36:22,219][19320] Num frames 100...
[2023-04-27 22:36:22,339][19320] Num frames 200...
[2023-04-27 22:36:22,445][19320] Num frames 300...
[2023-04-27 22:36:22,572][19320] Num frames 400...
[2023-04-27 22:36:22,684][19320] Num frames 500...
[2023-04-27 22:36:22,754][19320] Avg episode rewards: #0: 7.120, true rewards: #0: 5.120
[2023-04-27 22:36:22,755][19320] Avg episode reward: 7.120, avg true_objective: 5.120
[2023-04-27 22:36:22,855][19320] Num frames 600...
[2023-04-27 22:36:22,974][19320] Num frames 700...
[2023-04-27 22:36:23,101][19320] Num frames 800...
[2023-04-27 22:36:23,257][19320] Avg episode rewards: #0: 5.480, true rewards: #0: 4.480
[2023-04-27 22:36:23,258][19320] Avg episode reward: 5.480, avg true_objective: 4.480
[2023-04-27 22:36:23,263][19320] Num frames 900...
[2023-04-27 22:36:23,371][19320] Num frames 1000...
[2023-04-27 22:36:23,473][19320] Num frames 1100...
[2023-04-27 22:36:23,587][19320] Num frames 1200...
[2023-04-27 22:36:23,727][19320] Avg episode rewards: #0: 4.933, true rewards: #0: 4.267
[2023-04-27 22:36:23,728][19320] Avg episode reward: 4.933, avg true_objective: 4.267
[2023-04-27 22:36:23,755][19320] Num frames 1300...
[2023-04-27 22:36:23,873][19320] Num frames 1400...
[2023-04-27 22:36:23,991][19320] Num frames 1500...
[2023-04-27 22:36:24,080][19320] Avg episode rewards: #0: 4.340, true rewards: #0: 3.840
[2023-04-27 22:36:24,081][19320] Avg episode reward: 4.340, avg true_objective: 3.840
[2023-04-27 22:36:24,143][19320] Num frames 1600...
[2023-04-27 22:36:24,240][19320] Num frames 1700...
[2023-04-27 22:36:24,341][19320] Num frames 1800...
[2023-04-27 22:36:24,432][19320] Num frames 1900...
[2023-04-27 22:36:24,562][19320] Avg episode rewards: #0: 4.768, true rewards: #0: 3.968
[2023-04-27 22:36:24,563][19320] Avg episode reward: 4.768, avg true_objective: 3.968
[2023-04-27 22:36:24,577][19320] Num frames 2000...
[2023-04-27 22:36:24,676][19320] Num frames 2100...
[2023-04-27 22:36:24,778][19320] Num frames 2200...
[2023-04-27 22:36:24,881][19320] Num frames 2300...
[2023-04-27 22:36:25,004][19320] Avg episode rewards: #0: 4.613, true rewards: #0: 3.947
[2023-04-27 22:36:25,005][19320] Avg episode reward: 4.613, avg true_objective: 3.947
[2023-04-27 22:36:25,036][19320] Num frames 2400...
[2023-04-27 22:36:25,138][19320] Num frames 2500...
[2023-04-27 22:36:25,237][19320] Num frames 2600...
[2023-04-27 22:36:25,340][19320] Num frames 2700...
[2023-04-27 22:36:25,446][19320] Avg episode rewards: #0: 4.503, true rewards: #0: 3.931
[2023-04-27 22:36:25,447][19320] Avg episode reward: 4.503, avg true_objective: 3.931
[2023-04-27 22:36:25,498][19320] Num frames 2800...
[2023-04-27 22:36:25,598][19320] Num frames 2900...
[2023-04-27 22:36:25,701][19320] Num frames 3000...
[2023-04-27 22:36:25,800][19320] Num frames 3100...
[2023-04-27 22:36:25,888][19320] Avg episode rewards: #0: 4.420, true rewards: #0: 3.920
[2023-04-27 22:36:25,889][19320] Avg episode reward: 4.420, avg true_objective: 3.920
[2023-04-27 22:36:25,969][19320] Num frames 3200...
[2023-04-27 22:36:26,076][19320] Num frames 3300...
[2023-04-27 22:36:26,181][19320] Num frames 3400...
[2023-04-27 22:36:26,281][19320] Num frames 3500...
[2023-04-27 22:36:26,354][19320] Avg episode rewards: #0: 4.356, true rewards: #0: 3.911
[2023-04-27 22:36:26,355][19320] Avg episode reward: 4.356, avg true_objective: 3.911
[2023-04-27 22:36:26,446][19320] Num frames 3600...
[2023-04-27 22:36:26,560][19320] Num frames 3700...
[2023-04-27 22:36:26,670][19320] Num frames 3800...
[2023-04-27 22:36:26,784][19320] Num frames 3900...
[2023-04-27 22:36:26,842][19320] Avg episode rewards: #0: 4.304, true rewards: #0: 3.904
[2023-04-27 22:36:26,842][19320] Avg episode reward: 4.304, avg true_objective: 3.904
[2023-04-27 22:36:30,880][19320] Replay video saved to /home/byron/projects/rl-learning-course/unit-08/train_dir/default_experiment/replay.mp4!